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Chapter 1

Preface

Early in this century I began to see serious discrepancies between the way my
students seemed to learn and standard educational theories. The essays collected
here describe these discrepancies, my attempts to find remedies, and attempts
to understand how such an apparently counterproductive situation came to be.
Brief summaries of the essays are given at the end of this preface. The rest of
the preface provides a context for organizing and understanding the material.

In a nutshell, mainstream mathematics education is essentially philosophical,
not scientific. This is an oversimplified summary of a large number of specific
observations, not a philosophical assertion, and only emerged when I was trying
to organize the essays for publication. I had worked extensively with specific
small-scale issues of learning. Larger-scale topics, for instance design of high-
stakes tests or computer-based learning environments, were heavily dependent
in non-obvious ways on these details. Accordingly it made most sense to me to
begin with the most-detailed essays and work up. The custom in education is
the reverse: begin with big-picture theory and then fill in details. In fact this is
a fundamental difference between the philosophical and scientific approaches to
knowledge. The organizational confusion led me to realize I had been, without
explicit intent, developing a scientific approach to learning mathematics. The
traditional approach is essentially philosophical, and the discrepancies are eerily
typical of the discrepancies seen in the past between philosophical and scientific
accounts of the same subject.

It may be helpful to unpack the title of this volume, “Contributions to a
science of mathematical learning”. ‘Science’ reflects the realization described
above that the approach is more scientific than philosophical. These are ‘con-
tributions’ because they are incomplete, but more fundamentally because they
are work of a single individual and science must be the work of a community.
Finally, ‘mathematical learning’ rather than ‘mathematics education’ reflects
the realization that the traditional educational focus on teaching, and learning
as mediated by teachers, has actually been a barrier to deeper understanding of
learning itself.

Below I give brief distillations of science, philosophy and human nature,

3



4 CHAPTER 1. PREFACE

and locate the work in these contexts. Again I note this is an after-the-fact
explanation and the essays are not dependent on it. People who reject the
explanation, on philosophical grounds for instance, should not claim that the
essays fall with it. These must be rejected one-at-a-time on their own merits,
or lack thereof.

1.1 Science

The core strategy of science is to start with small, concrete observations or
questions, and work up in abstraction and down in detail. The objective is to
be as effective as possible. From these seeds mighty fields of knowledge grow.

Scientific fields essentially define themselves through these basic ingredients,
driven by the ambitions of researchers. First, the starting-point “concrete ob-
servations” may turn out to be composite or derivative, and more effectively
described in terms of more primitive objects. In other words the objects of
study are revealed as the field develops, and cannot be fixed in advance. Second,
methodology evolves as researchers refine it to maximize effectiveness. There-
fore, methodology is also revealed and cannot be fixed in advance. To paraphrase
[Knorr-Cetina], the commonalities in science are not in specific knowledge, nor
in the methods for constructing this knowledge, but at one more remove: the
approaches used to develop knowledge-constructing methodologies. Actually
this understates the coherence (what [Wilson] calls “consilience”) of scientific
knowledge and methodologies, but it does describe the short-range impressions
of participants. Finally, the whole enterprise can fail to get off the ground if
nothing effective can be extracted from the starting point. We can say ‘science
of extrasensory perception’, ‘science of homeopathic medicine’, etc., but this
does not mean there is any such thing. In short, people do not control science,
and attempts to do will make it unproductive. Successful scientists actually
take the opposite tack: they do their best to adapt to their subject and have
the subject control them, so it can lead them in productive directions.

Mature sciences develop levels of generality and abstraction, and these inter-
act in complex ways. Each level develops insights, questions and concerns that
inform and challenge other levels. Exploration at the research frontier is often
tentative and unconsolidated. In the long run, however, the bottom-up strat-
egy and the quest for effectiveness still shape the activity. Mature abstractions
are required to account for and be consistent with well-established data, using
methodologies optimized for the subject matter. If they cannot, then adjust-
ment is required: either the abstractions could be made more effective, or they
are less effective than previously believed and need to be refined, or (rarely)
there is a methodological flaw that needs to be hunted down and exterminated.
Sometimes these adjustments take a long time, but the need is acknowledged as
soon as genuine inconsistencies are verified.

Bottom-up development makes scientific knowledge powerful, robust, and
cumulative, but from a human point of view it has serious drawbacks. It is
very complicated. Because methodology is to a degree subject-specific, drawing
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sound conclusions requires deep subject-specific wisdom, and this is often at
odds with intuition or naive expectations. Questions or objections are resolved
by going back to details, and this requires time, effort, expertise and integrity.
Finally, scientific knowledge develops at a glacial pace.

1.2 Philosophy

Classical philosophy, politics, religion, alternative medicine, new-age mysticism,
feng shui—essentially every area outside science and engineering—approaches
knowledge in a top-down way. The simplest picture is that certain abstract
principles are taken as primary, and lower-level understanding and practice is
either derived from these or obtained by filling in details in ways consistent with
them.

In some cases the basic principles seem almost random. More often they are
abstracted from experience, prior beliefs, innate inclinations, etc., but they are
not driven by details as in science. Questions or objections are usually resolved
by appeal to authority (top) rather than data (bottom), and actual practice is
complicated by the variety of ways in which authority operates. For example,
lower-level conclusions are “derived” from more abstract principles using cer-
tain rules of argument. However these rules are determined by authority and
are usually designed to inhibit unwelcome conclusions rather than maximize
effectiveness. Further, the rules are usually nebulous enough that when unwel-
come conclusions do occur they can be rejected as misinterpretations or rule
violations.

Philosophically constructed knowledge has serious drawbacks. First, it is
ineffective. It usually performs poorly at nitty-gritty practical levels and lacks
mechanisms for improvement. This issue is usually dodged by presenting the
knowledge as a “world view” or belief system rather than a source of practi-
cal tools, and it is wrong to expect immediate results. Another drawback is
that it tends to fragment rather than accumulate. Disagreements among non-
authorities can be settled by appeals to authority, but there are no graceful
mechanisms for settling disagreement among authorities. Instead philosophical
knowledge communities tend to divide into mutually incompatible schools of
thought, factions, sects, etc., each with its own beliefs, rules, and authorities.

The last point has an ugly corollary. Top-down knowledge communities are
held together by the strength of their belief and commitment, not by the robust
power of their knowledge. As a result, challenges are taken as attacks to be
defended against, not new data to be accounted for or incorporated. Rival
factions have borders defended against intruders, and either warfare or uneasy
truces reign outside these borders.
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1.3 Humans

Why would anyone use a method with the drawbacks of top-down knowledge
construction? To be specific, the top-down Aristotelian approach to physics
now seems pathetically ineffective and easily refuted. Why did it dominate the
subject for more than two thousand years? The answer seems to be that it is
natural for humans in two different ways.

First, and most important here, top-down construction seems to be the in-
nate human approach to knowledge. Semi-deductive reasoning comes easily, and
specific systems seem attractive and accessible because—compared to science—
the approach is fast and the answers are simpler and complete. They do require
some thought and study, however, and this activates another innate mechanism.
Learned material becomes physically implemented in neural structure. As time
goes on it becomes increasingly easy to see the world from this point of view,
and increasingly difficult to see it any other way, c.f. [Barton]. Eventually it
becomes visceral: this is right and everything else is wrong. People implicitly
acknowledge the weakness of the top-down approach by having no qualms about
rejecting beliefs of others. But the innate mechanisms prevent them from see-
ing the immediate logical corollary: their own beliefs are no more likely to be
correct.

The other attraction of Aristotelian physics is that it embodies our naive
innate physical beliefs. Our innate physics is now known to be wrong [Dunbar],
but it feels right and was easy to believe as long as it wasn’t expected to ac-
tually do anything. Details vary but the phenomenon is general. Beliefs and
philosophies develop from what we already believe and are comfortable with. If
disciplined study shows the facts to be otherwise then we are likely to find them
as uncomfortable as children find Newtonian physics.

Among other things, these points clarify public attitudes toward science.
Yes, the subject matter is complex and demanding. The real problem, however,
is that the bottom-up approach to knowledge is unnatural for humans. Not only
do we lack the innate receptacle we seem to have for top-down knowledge, but we
have to suppress this innate tendency, and suppress naive intuitions in order to
learn the methods of science. Few succeed, and for most people science remains
just another belief system. They accept the golden eggs laid by science but do
not see effectiveness as indicating a special status for scientific conclusions, and
do not hesitate to reject these if they conflict with other beliefs.

1.4 Scientific Revolutions

Every area in contemporary science was originally approached philosophically.
At some point scientific approaches got footholds and, by virtue of much greater
effectiveness, replaced philosophy. The pre- and post-foothold processes are
quite different. The defense mechanisms of philosophical knowledge systems
make the replacement process contentious, highly visible, and deserving of the
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term ‘revolution1’. The pre-foothold period is quieter and more difficult. Scien-
tific material accumulates very slowly because the mindsets needed for routine
production are considered unnatural and wrong and are correspondingly rare.
Further, there is nothing to sustain the activity until enough accumulates to
provide payoffs, and until these payoffs are recognized as valuable. The pattern
is that once philosophy is well-established, it takes science between two and
three millennia to get to the foothold stage.

The first major scientific revolution, and the best known, occurred in physics
in the seventeenth century. Chemistry followed in the eighteenth, and biology
and geology mostly in the nineteenth.

It is irrelevant whether or not this work is the beginning of a ‘scientific revo-
lution’ in mathematics education. The revolution picture is important because
there was a scientific revolution in mathematics. This is virtually unknown. The
conventional view is that either mathematics is not a science or it is uniquely
compatible with philosophy, but in any case a heavily-philosophical approach
seems to be effective and has thrived for three millennia. There was a well-
known period of turmoil—the “foundational crisis”—in the early twentieth cen-
tury [Gray]. During this period professional practice broke from philosophy and
became incredibly more powerful. The conventional view of philosophers, his-
torians, educators, popularizers, and most users of mathematics is that this was
a sort of collective insanity that will eventually pass, not a permanent revolu-
tion, and there is no connection between seemingly unnatural modern methods
and incredible modern success. However, historical, philosophical, sociological,
technical, and other aspects of this event are traced out in detail in [Quinn],
and it really does seem to have been an essentially typical philosophy/science
transition.

The significance for the development here is that contemporary mathemat-
ics education is built on two sets of philosophical constructs: philosophical ac-
counts of teaching and learning, and philosophical accounts of mathematics. A
science of mathematical learning requires scientific approaches to both compo-
nents. We see, for instance, that the recent ‘math wars’ were not the beginning
of a scientific revolution in mathematics education because both sides accept
standard and rather romanticized philosophical descriptions of obsolete math-
ematical practice. This work connects instead with the bottom-up description
in [Quinn].

This account of the development of this work is mostly hindsight. Founda-
tions for the description of contemporary mathematics had been laid a decade
earlier but I did not take it seriously until I realized that some of my most effec-
tive help strategies were drawn from my professional training. When I tried to
explicitly describe modern methodology, as clarified by the work with students,
the result was nothing like any of the standard philosophical descriptions. His-
torical study (especially Gray) showed that this disconnect dates roughly from

1‘Scientific revolution’ here refers to the onset of scientific methodology. This seems to
have been the general meaning until T. S. Kuhn [Kuhn] and successors extended the term to
include “paradigm shifts” within science. Kuhn, perhaps understandably for a philosopher,
did not see a qualitative difference between these and philosophy/science transitions.
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the period 1880–1920. Mathematicians, along with everyone else, like to think
of mathematics as a seamless development over almost three thousand years. It
took me quite a while to realize this view is not just wrong but very wrong, and
that a profound transition occurred only a century ago. The biggest surprise
was finding that contemporary professional practice is highly adapted for hu-
man use—much more so in fact than the philosophically-constrained nineteenth-
century version. My professional training connected with my students’ needs
for this reason as much as for the greater technical power.

1.5 Education, and this Work

The main input for this work is a decade spent in a computer-learning facility.
I followed students around to see how they used the materials, and provided
one-on-one help to diagnose and repair learning problems. I also developed
courseware with ambitious goals, designed to avoid the problems and to work
the way they wanted to use it. The objectives were practical and immediate so
the activity was closer to “learning–engineering” than science. From the science
perspective described above, concrete problems and observations were guiding
me to identify both core issues and and effective methodologies.

The next component was the bottom-up description of professional mathe-
matics practice described above.

The most recent ingredient was a study of cognitive neuroscience. As might
be expected, this considerably clarified cognitive aspects of both student learn-
ing and professional practice. Unexpectedly, an observation of J. T. Bruer
about scale gaps (see Chapter 3) also crystalized the macro/micro and philoso-
phy/science perspective described here.

It now seems clear that contemporary mathematics education, as embod-
ied in schools of education, the contemporary research community, educational
associations and think-tanks, and most of the teacher corps, is a collection of
top-down philosophical constructions. When they speak of “educational philos-
ophy” they really mean it.

The philosophy/science perspective clarifies why educators tend to react
negatively to this material. Philosophy depends on belief and authority rather
than data, and the primary allegiance of practitioners is to their principles and
methodology. It is their duty to oppose things not imagined in their philosophy.
These essays are unconventional in many ways, but three seem to be particu-
larly problematic. First, educational philosophy is built around teaching and
teacher-mediated learning. Learning at the micro (neuroscience) level, and in
computer-based programs, is not teacher-dependent, and the traditional class-
room is a rather poor model. From the science-defines-itself perspective it seems
that they have not correctly identified the basic subject of study. But suggest-
ing a departure from the classroom model is a serious challenge to the system.
The second problem is that goals in contemporary education are more-or-less
“whatever we can achieve with these methods”. This is reenforced by tight com-
partmentalization into elementary, secondary, early college, and “other”, the
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divisions being justified as “age-appropriate”. If micro-level learning insights
enable students at a given level to work a wider variety of problems, this can
be rejected as “age-inappropriate” or “not contributing to established goals”.
Suggesting that it might be “better” is a challenge to the system. Finally, as
explained above, the mathematical content connects with a bottom-up descrip-
tion of modern professional practice rather than one of the usual philosophical
account of nineteenth-century practice. This is problematic for interesting his-
torical reasons. As usual for such events, the early twentieth-century ‘revolution’
in mathematics was very contentious. Traditionalists, including such luminaries
as Henri Poincaré and Felix Klein, denounced the new methods as rote formal
manipulation, and soulless abstraction disconnected from reality. They had no
audience in the professional community because young people voted with their
feet for the new ways. But philosophers and educators were listening. Not only
do these remain committed to the old ways, but the venomous invective against
the new is deeply embedded in their ways of thinking.

1.6 Organization

The essays here are the beginnings of a bottom-up (scientific) approach to math-
ematics education. Accordingly, they are ordered by scale going from micro to
macro. Rough descriptions of scale divisions, and Parts of the book, are given in
Figure 1.1. As usual in science, material at larger scales is a delicately-balanced

educational theory Commonalities of teaching, learning, and behav-
ior that transcend content.

subject matter Content, and its influence on teaching and learn-
ing.

course/curriculum Learning goals and methodologies at the course
and curriculum level.

cognition/activity Neural implementation of skills and understand-
ing, and strategies for developing these.

Figure 1.1: Educational levels from macro to micro

synthesis of lower scales. Scientific reading strategies are adapted to this: if
something doesn’t make sense, follow the roots down a few levels to find out
what it really means, or to see the constraints that make it necessary. Quickly
rejecting things that don’t seem to make sense is a philosophical strategy that
will not work here.

Finally, the goals of the essays varies with level. Lower-level essays are
mostly observations, suggestions and proposals. Top-level essays are mainly
concerned with deficiencies in mainstream practice and philosophical principles,
as revealed by micro-level studies. It is premature to try to extract much in the
way of high-level conclusions or principles.
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1.7 Brief summaries

Part I: The Cognition/Activity Level

These essays are primarily concerned with learning at the individual level. Is-
sues related to teaching and synchronous group learning, or the organization of
asynchronous learning, are explored at the next level.

Chapter 2: Neuroscience Experiments for Mathematics Education

Neuroscience experiments are described that could have significant impact in
mathematics education. The first group explores why students find certain
problem types difficult and how to fix this. The second group explores subtle
but important oddities of human learning.

A goal is to explore the kinds of understanding and experience that would
enable good neuroscience/education interactions. The next essay addresses the
other side of the coin.

Chapter 3: Mathematics Education versus Cognitive Neuroscience

[incomplete first draft] For quite some time mathematics education has seemed
an area in which cognitive neuroscience might make important contributions.
This has not happened: studies have been large in number but small in im-
pact, and education has been influenced more by misunderstandings and over-
simplifications than actual science. Are these ‘important contributions’ an illu-
sion? If not, why have they not been realized?

This article describes difficulties and obstacles to effective use of neuroscience
by the contemporary education community. Comparison with the previous essay
identifies specific shortcomings that are, in a sense, ways in which contemporary
education is not scientific.

Chapter 4: Contemporary Proofs for Mathematics Education

In contemporary mathematical practice the primary importance of proof is the
advantage it provides to users: proofs enable very high levels of reliability.
This essay illustrates how a similar approach might have similar benefits in
elementary education. Written for the proceedings of the ICMI Study 19 on
Proof in Elementary Mathematics (Taipei, 2009).

Chapter 5: Proof Projects for Teachers

In contemporary mathematics, concise definitions and previously–internalized
structure are exploited to give rapid and effective access to new material. It will
be difficult, and is certainly beyond my expertise, to incorporate these methods
into school materials. To provide a first approximation this essay offers course
material for teachers that treats standard topics (including fractions and area)
in ways that show contemporary methodology at work.
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Chapter 6: K-12 Calculator Woes

Graphing calculators have been widely adopted in some K–12 curricula. Un-
fortunately the way they are used seems to cause significant learning deficits
that limit success at higher levels. Written for the Notices of the American
Mathematical Society.

Chapter 7: Student Computing in Mathematics: Interface Design

This is the first in a series on computing environments designed to support
learning in mathematics and other technical areas. They draw on many years
experience with students working with computers and in computer environ-
ments.

The main point is that human learning is quite complex, and the full com-
plexity is only beginning to unfold as we move away from the tightly–bundled
package of hand calculation in traditional classrooms. There are more ways for
learning to fail than most of us imagined; many are different from the things
educators traditionally look for; and underlying causes are obscure.

This article concerns basic student-computer interactions. Among many
other things we see that standard cut-and-paste can undercut some learning
objectives and has to be modified. A planned sequel should concern computa-
tional functionality. Careful limitations are needed to avoid turning the subject
into keystroke sequences.

Part II: The Course/Curriculum Level

Chapter 8: Task-oriented Math Education

“Learning tasks” look like tests to students, but are designed as learning envi-
ronments. Experience at the Math Emporium at Virginia Tech, described more
detail in subsequent essays, demonstrates educational effectiveness of this ap-
proach at the college level and suggests it should work at least in upper grades
in K-12. Benefits could include significant improvement in the quality and ef-
fects of high-stakes tests. Some of the educational advantages come from giving
students more choices and more control over their learning.

Chapter 9: Downstream Evaluation of a Task-Oriented Calculus Course

(Not yet available) The study concerns second–semester calculus for science and
engineering. Over a period of eleven semesters roughly half the students (3720)
were in traditional sections, half (3987) in task-oriented (computer-tested) sec-
tions, all with common final exams. More precisely, these numbers are students
who passed the course. Our data includes all students who signed up for the
course, with drop-outs included for reference, for a total population of 9235.
Analysis will include outcomes in subsequent courses, in most cases to gradua-
tion. Preliminary analysis indicates essentially equivalent outcomes. The final



12 CHAPTER 1. PREFACE

version will be much sharper quantitatively but is not expected to be much
different qualitatively.

The “equivalent–outcome” conclusion of this study seems to fall short of the
announced goal of better outcomes. It is actually very encouraging:

• The task (test) materials were developed in 2004 and have not been up-
dated. Understanding has advanced considerably in the last six years and
substantial improvement should be possible.

• Task-oriented courses are considerably more efficient. Focusing on out-
comes in this course overlooks the substantial benefits of resources released
to the rest of the program.

Some of these issues are explored in more detail in the next essay.

Chapter 11: Economics of Computer–Based Mathematics Education

Experience at the Math Emporium at Virginia Tech indicates that computer-
based education can be both efficient and effective. However it may require
large-scale development and infrastructure, and educational techniques have to
be adapted to economic constraints. Moreover it must be assessed as part of
the system, not just in terms of outcomes.

Chapter 10: Beneficial High-Stakes Math Tests: an Example

A worked-out example is given to show how mathematical and educational in-
sights can be incorporated in the structure of high-stakes K–12 math tests in a
way that promotes better teaching practices and more effective learning. The ex-
ample concerns symbolic skills deficits seen in students from calculator-oriented
K–12 programs. This is a variation on the “task-oriented” design described
above.

Chapter 12: Levels in a Math Course

Variation in student interest, preparation, and performance is usually accom-
modated by offering courses at several different levels and placing students in
them at the beginning of the term. This practice has serious drawbacks that
might be avoided by reversing the placement strategy.

In the multi-level structure envisioned here, students enroll in a combined
course, sort themselves into levels according to performance, and determina-
tions about the credit they receive are made at the end of the term. Resource
constraints may make this approach impractical in some cases, but when it can
be used it could significantly improve outcomes.

Chapter 13: Teaching versus Learning in Mathematics

Teachers seem to be far too focused on what happens on our side of the desk.
It now looks as though teaching and learning were never as closely linked as
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we wanted to think, and the gap will widen unless we focus on students and
learning, particularly long-term learning, and not through the lens of teaching.
Examples concern calculator arithmetic, “clickers”, computer courseware, and
diagnosis of errors.

Part III: The Subject Level

Chapter 14: Professional Practice as a Resource for Mathematics
Education

A detailed study of professional practice is given Towards a Science of Con-
temporary Mathematics, and an extract will be included in the final version
of this collection. This work describes how professional mathematical practice
changed in the early twentieth century, and why current practice is much more
effective. It also traces historical reasons why mathematics education continues
to be modeled on the methodology of the nineteenth century. Continued use of
an obsolete model may be one reason why education has been unable to improve
much on nineteenth-century outcomes.

Chapter 15: Updating Klein’s ‘Elementary Mathematics from an Ad-
vanced Viewpoint’: content only, or the viewpoint as well?

The Klein Project, organized in part by ICMI (International Commission on
Mathematical Instruction), seeks to update Felix Klein’s influential 1908 book.
However Klein was a strong critic of twentieth-century methodologies being
developed and adopted at the time, and his ‘advanced viewpoint’ is that of the
nineteenth century. Indeed, his influence has been a barrier to educational use
of contemporary methodology. The goal of the Klein project is to update the
work to include some topics in twentieth-century mathematics, but (by default)
retain Klein’s nineteenth-century viewpoint. Shouldn’t the viewpoint be revised
as well, at least to be upward-compatible if full modernization is impossible?

Part IV: The Educational-Theory Level

These essays mostly concern shortcomings and failures of contemporary educa-
tion at the policy and theory level.

Chapter 16: Dysfunctional Standards Documents in Mathematics Ed-
ucation

Standards documents attract a great deal of attention, and reasonably so: they
should provide structure and common reference points for teachers, adminis-
trators, curriculum developers, textbook writers, test developers, etc. Unfortu-
nately current documents do a poor job with all this and it seems unlikely they
will improve.
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Chapter 17: Math / Math-Education Terminology Problems

Many common terms have very different meanings in the two communities,
and sometimes neither is appropriate. The slogan “understanding, not rote
learning or mechanical calculation”, for example, has been quite influential.
Unfortunately the mathematical meaning for “understand”, adapted to support
long-term learning in math, is too strong to be a realistic goal in K-12. Equally
unfortunately, the weak math-ed sense is easily achieved but does not support
long-term learning. Actual solutions will require us to transcend terminology
problems. Possibilities are explored in the next essay.

Chapter 18: Communication Between the Math and Math-Education
Communities

Communication between K-12 and college educators is sorely needed to reverse
a decline in preparation for study in technical fields. Attempts have been largely
unsuccessful and sometimes so unpleasant they are described as “math wars”.
I analyze obstacles and particularly try to separate linguistic differences from
conflicts of underlying mindsets and priorities. Annotated lists of sample prob-
lems offer a good solution, but philosophical preference for abstract high-level
discourse seems to rule this out.

Chapter 19: Evaluation of Methods in Math Education

Some methodologies in education research and curriculum development, es-
pecially in the U.S., seem almost designed to generate spurious findings and
discourage deeper insights. As a result the current emphasis on “research-
validated” methods is more likely to block good ideas than to promote them.

Web Sites

1.7.0.1 EduTEX Working Group on TEX-based educational materi-
als.

The web site for this project is at http://edutex-wiki.tug.org/wiki/
The Wiki for a NSF–funded project to develop support for computer–based

testing and other educational materials.

The Math Emporium at Virginia Tech

http://www.emporium.vt.edu
This facility supports computer–based and computer–tested math courses for

more than 5,000 students each semester. The essays in this collection are largely
based on experience with developing computer materials for the Emporium and
many hundreds of hours of one-on-one help sessions with students working there.
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Personal web page

http://www.math.vt.edu/people/quinn/ The education link on this page leads
to PDF versions of these essays, as well as reports and draft versions of other
essays. Many of these concern the Math Emporium.
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away? In M. Lovett, and P. Shah (Eds.), Thinking with Data: 33rd
Carnegie Symposium on Cognition, Erlbaum pub. (2007) pp. 193–205.

[Gray] Jeremy Gray; Plato’s Ghost: The Modernist Transformation of Math-
ematics, Princeton University Press 2008.

[Knorr-Cetina] Karen Knorr-Cetina; Epistemic Cultures, Harvard University
Press 1999.

[Kuhn] Thomas S. Kuhn, The Structure of Scientific Revolutions, 1st. ed.,
Univ. of Chicago Pr., 1962.

[Quinn] Frank Quinn; Towards a Science of Contemporary Mathematics, cur-
rent draft available on personal web page.

[Wilson] E. O. Wilson; Consilience: The Unity of Knowledge, Knopf, New
York 1998.



16 CHAPTER 1. PREFACE



Contents

1 Preface 3
1.1 Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Scientific Revolutions . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Education, and this Work . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Brief summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I The Cognitive/Activity Level 25

2 Neuroscience Experiments 27
2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.2 Cognitive interference, outline . . . . . . . . . . . . . . . . 28
2.1.3 Subliminal learning and reenforcement, outline . . . . . . 31

2.2 Cognitive interference . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Cognitive interference in multiplication . . . . . . . . . . 34
2.2.2 Cognitive interference in word problems . . . . . . . . . . 38
2.2.3 Interference from customary usage of parentheses . . . . . 41
2.2.4 Interference from customary integer names . . . . . . . . 42

2.3 Subliminal learning and reenforcement . . . . . . . . . . . . . . . 44
2.3.1 Subliminal algebra in integer multiplication . . . . . . . . 45
2.3.2 Subliminal learning of number facts . . . . . . . . . . . . 47
2.3.3 Kinetic reenforcement of geometric structure . . . . . . . 50

3 Mathematics Education versus Cognitive Neuroscience 57
3.1 Background and outline . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.2 Note on style . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 The macro/micro spectrum . . . . . . . . . . . . . . . . . . . . . 59
3.3 Ineffective cognitive psychology . . . . . . . . . . . . . . . . . . . 59

17



18 CONTENTS

3.3.1 Specific questions . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Ineffective neuroscience . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.2 Solving equations . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.3 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.4 Word problems . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Dangerous neuroscience . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Ineffective education . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.1 Lack of scientific skills . . . . . . . . . . . . . . . . . . . . 67
3.7 Mathematics and learning . . . . . . . . . . . . . . . . . . . . . . 68

3.7.1 Teaching vs. diagnosis . . . . . . . . . . . . . . . . . . . . 68
3.7.2 Modern mathematics . . . . . . . . . . . . . . . . . . . . . 69
3.7.3 Educational hostility . . . . . . . . . . . . . . . . . . . . . 69
3.7.4 Theoretical incoherence . . . . . . . . . . . . . . . . . . . 70
3.7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Appendex: Technical difficulty, and consequences . . . . . . . . . 71
3.8.1 Technical difficulties . . . . . . . . . . . . . . . . . . . . . 71
3.8.2 Needs of neuroscience . . . . . . . . . . . . . . . . . . . . 73

3.9 Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.9.1 Unmet needs . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Contemporary Proofs 81
4.1 Proofs, Potential Proofs, and Formal Proofs . . . . . . . . . . . . 82

4.1.1 Potential Proof . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1.2 Formal Potential Proof . . . . . . . . . . . . . . . . . . . . 84
4.1.3 Proof and Correctness . . . . . . . . . . . . . . . . . . . . 87
4.1.4 The Role of Diagnosis . . . . . . . . . . . . . . . . . . . . 88
4.1.5 Other Views of Proof . . . . . . . . . . . . . . . . . . . . 88

4.2 Proof Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.1 Polynomial Multiplication . . . . . . . . . . . . . . . . . . 90
4.2.2 Solving Equations . . . . . . . . . . . . . . . . . . . . . . 91
4.2.3 Standardizing Quadratics . . . . . . . . . . . . . . . . . . 92
4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Long Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.1 Big Multiplications . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Big Additions . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.3 Digits in Big Products . . . . . . . . . . . . . . . . . . . . 98
4.3.4 Puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Word Problems and Applications . . . . . . . . . . . . . . . . . . 102
4.4.1 Word Problems and Physical-World Applications . . . . . 102
4.4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.3 Mathematical Applications . . . . . . . . . . . . . . . . . 105



CONTENTS 19

5 Proof Projects for Teachers 109
5.1 Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.1 Commutative Rings . . . . . . . . . . . . . . . . . . . . . 111
5.1.2 Examples of Commutative Rings . . . . . . . . . . . . . . 111
5.1.3 Preliminary Definition of Fractions . . . . . . . . . . . . . 112
5.1.4 Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1.5 Unpacking Definitions . . . . . . . . . . . . . . . . . . . . 114
5.1.6 More about Inverses . . . . . . . . . . . . . . . . . . . . . 114
5.1.7 Difficulties with the Preliminary Version . . . . . . . . . . 115
5.1.8 Zero divisors . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1.9 Final version of the Definition . . . . . . . . . . . . . . . . 115
5.1.10 Rings of fractions . . . . . . . . . . . . . . . . . . . . . . . 117
5.1.11 Ring Homomorphisms . . . . . . . . . . . . . . . . . . . . 118
5.1.12 Grothendieck Groups . . . . . . . . . . . . . . . . . . . . 118

5.2 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.1 Polygonal closed paths . . . . . . . . . . . . . . . . . . . . 121
5.2.2 The Project . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.3 A Difficulty, and a Strategy . . . . . . . . . . . . . . . . . 123
5.2.4 Properties of A . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.5 Orientations and Convex Polygons . . . . . . . . . . . . . 125
5.2.6 Simple Closed Polygons . . . . . . . . . . . . . . . . . . . 127
5.2.7 Winding Numbers . . . . . . . . . . . . . . . . . . . . . . 128

5.3 More About Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.1 Area and Rings . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.2 Area and Vectors . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.5 Comments for Students . . . . . . . . . . . . . . . . . . . . . . . 137

5.5.1 Route to a Formula . . . . . . . . . . . . . . . . . . . . . 137
5.6 Comments for Educators . . . . . . . . . . . . . . . . . . . . . . . 138

5.6.1 Formal Definitions and Unpacking . . . . . . . . . . . . . 138
5.6.2 The Fraction Project . . . . . . . . . . . . . . . . . . . . . 139
5.6.3 The Area Project . . . . . . . . . . . . . . . . . . . . . . . 141
5.6.4 Cautions about Definitions and Internalization . . . . . . 142
5.6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 K–12 Calculator Woes 147
6.1 Disconnect from Mathematical Structure . . . . . . . . . . . . . . 147
6.2 Disconnect from Visual and Symbolic Thinking . . . . . . . . . . 148
6.3 Lack of Kinetic Reinforcement . . . . . . . . . . . . . . . . . . . 148
6.4 Lack of Verbal Reinforcement . . . . . . . . . . . . . . . . . . . . 148
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



20 CONTENTS

7 Student Computing: Interface Design 151
7.0.1 Learning and the Interface . . . . . . . . . . . . . . . . . . 152

7.1 Guiding Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.1.1 Learning, not Technology . . . . . . . . . . . . . . . . . . 152
7.1.2 Symbolization . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.1.3 Modes of Learning . . . . . . . . . . . . . . . . . . . . . . 154
7.1.4 Process, not Answers . . . . . . . . . . . . . . . . . . . . . 158

7.2 Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2.1 Input Modes . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2.2 Windows and Sessions . . . . . . . . . . . . . . . . . . . . 161
7.2.3 Input Formats . . . . . . . . . . . . . . . . . . . . . . . . 163

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

II The Course/Curriculum Level 167

8 Task–Oriented Math Education 169
8.1 Goals and descriptions . . . . . . . . . . . . . . . . . . . . . . . 169

8.1.1 Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.2 General Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.2.1 Non–terminal courses in a task–oriented subject . . . . . 172
8.2.2 Students capable of modestly independent work . . . . . . 172
8.2.3 Computer–based . . . . . . . . . . . . . . . . . . . . . . . 172
8.2.4 Helpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.2.5 Traditional class meetings . . . . . . . . . . . . . . . . . 174
8.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.3 More about Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.3.1 Tasks are not Assessments . . . . . . . . . . . . . . . . . . 175
8.3.2 Learning–goals and strategies . . . . . . . . . . . . . . . . 176
8.3.3 Task Constraints . . . . . . . . . . . . . . . . . . . . . . . 176
8.3.4 Multiple tries in assessment . . . . . . . . . . . . . . . . . 178
8.3.5 Software generation . . . . . . . . . . . . . . . . . . . . . 179
8.3.6 High–stakes tests . . . . . . . . . . . . . . . . . . . . . . 179
8.3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.4 Course Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.4.1 Not An Online Course . . . . . . . . . . . . . . . . . . . . 180
8.4.2 The Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.4.3 Student behavior . . . . . . . . . . . . . . . . . . . . . . 185
8.4.4 Beyond the Skeleton . . . . . . . . . . . . . . . . . . . . . 186
8.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.5 Resource Requirements . . . . . . . . . . . . . . . . . . . . . . . 188
8.5.1 Increased resources are not an option . . . . . . . . . . . 189
8.5.2 Operating expenses . . . . . . . . . . . . . . . . . . . . . . 190
8.5.3 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



CONTENTS 21

8.5.4 Development . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.6 Educational Opportunities . . . . . . . . . . . . . . . . . . . . . . 196
8.6.1 A Behavioral Model . . . . . . . . . . . . . . . . . . . . . 196
8.6.2 The Main Strategy . . . . . . . . . . . . . . . . . . . . . . 197
8.6.3 Tracked Courses . . . . . . . . . . . . . . . . . . . . . . . 198
8.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9 Downstream Evaluation of a Task–Oriented Course 201

10 Beneficial high–stakes tests 203
10.0.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
10.0.2 Other Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 204
10.0.3 Web Resources . . . . . . . . . . . . . . . . . . . . . . . . 205

10.1 Analysis of the Problem . . . . . . . . . . . . . . . . . . . . . . . 205
10.1.1 A Sample Test Question . . . . . . . . . . . . . . . . . . . 205
10.1.2 Mathematical approach . . . . . . . . . . . . . . . . . . . 205
10.1.3 Calculator approach . . . . . . . . . . . . . . . . . . . . . 206
10.1.4 Traditional approach . . . . . . . . . . . . . . . . . . . . . 206

10.2 Diagnosis and a Remedy . . . . . . . . . . . . . . . . . . . . . . . 207
10.2.1 Remedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
10.2.2 Better Sample Question . . . . . . . . . . . . . . . . . . . 207

10.3 Test Design and Implementation . . . . . . . . . . . . . . . . . . 209
10.3.1 Learning Tasks . . . . . . . . . . . . . . . . . . . . . . . . 209
10.3.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . 209
10.3.3 Formats and Programming . . . . . . . . . . . . . . . . . 210
10.3.4 Advanced Functionality . . . . . . . . . . . . . . . . . . . 211

10.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

11 Economics of Computer–Based Education 213
11.1 Educational Models . . . . . . . . . . . . . . . . . . . . . . . . . 214

11.1.1 On–line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
11.1.2 Gigantic Lectures . . . . . . . . . . . . . . . . . . . . . . . 214
11.1.3 Computer–based . . . . . . . . . . . . . . . . . . . . . . . 214
11.1.4 Computer–tested . . . . . . . . . . . . . . . . . . . . . . . 215
11.1.5 Computer–Enriched . . . . . . . . . . . . . . . . . . . . . 215
11.1.6 Computer Labs . . . . . . . . . . . . . . . . . . . . . . . . 215
11.1.7 Small Traditional Classes . . . . . . . . . . . . . . . . . . 215

11.2 Program Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
11.2.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.2.2 Scale and Efficiency . . . . . . . . . . . . . . . . . . . . . 216

11.3 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.3.1 Outcomes in the Program . . . . . . . . . . . . . . . . . . 217
11.3.2 Outcomes outside the Program . . . . . . . . . . . . . . . 218

11.4 More about Economics . . . . . . . . . . . . . . . . . . . . . . . . 218



22 CONTENTS

11.4.1 Goals and Evaluations . . . . . . . . . . . . . . . . . . . . 219
11.4.2 Internal and External Resources . . . . . . . . . . . . . . 219
11.4.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . 220

11.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

12 Levels in a mathematics course 223
12.1 Performance Diversity . . . . . . . . . . . . . . . . . . . . . . . . 224

12.1.1 Under–performing students . . . . . . . . . . . . . . . . . 224
12.1.2 Over–performing students . . . . . . . . . . . . . . . . . . 225
12.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

12.2 Placement tests are not the answer . . . . . . . . . . . . . . . . . 226
12.2.1 False positives and negatives . . . . . . . . . . . . . . . . 226
12.2.2 Tests are Untested . . . . . . . . . . . . . . . . . . . . . . 227
12.2.3 An Example, and Gateway tests . . . . . . . . . . . . . . 227

12.3 Tracked Courses . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
12.3.1 Basic Plan . . . . . . . . . . . . . . . . . . . . . . . . . . 228
12.3.2 Introduction to Proofs course . . . . . . . . . . . . . . . . 229
12.3.3 Both Tracks and Levels . . . . . . . . . . . . . . . . . . . 230

12.4 Implementation Problems . . . . . . . . . . . . . . . . . . . . . . 231
12.4.1 Resource Constraints . . . . . . . . . . . . . . . . . . . . . 231
12.4.2 Institutional Barriers . . . . . . . . . . . . . . . . . . . . . 231

12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

13 Teaching vs Learning 233
13.1 Goals vs. Responsibilities . . . . . . . . . . . . . . . . . . . . . . 233

13.1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . 233
13.1.2 Calculator arithmetic . . . . . . . . . . . . . . . . . . . . 234
13.1.3 Computer calculus? . . . . . . . . . . . . . . . . . . . . . 236

13.2 Improved teaching vs. Improved learning . . . . . . . . . . . . . 236
13.3 Computer teaching vs. Computer–based learning . . . . . . . . . 237
13.4 Information delivery vs. Diagnosis . . . . . . . . . . . . . . . . . 237
13.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

III The Subject Level 239

14 Professional Practice as a Resource for Mathematics Education241

15 Updating Klein’s Viewpoint 243
15.1 The Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
15.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

15.2.1 Historical Baggage . . . . . . . . . . . . . . . . . . . . . . 244
15.2.2 Ineffective Response . . . . . . . . . . . . . . . . . . . . . 245
15.2.3 Is Change Needed? . . . . . . . . . . . . . . . . . . . . . . 245
15.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 246

15.3 Example: Concept Formation . . . . . . . . . . . . . . . . . . . . 247



CONTENTS 23

15.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 247
15.3.2 Arguments for the old approach . . . . . . . . . . . . . . 247
15.3.3 Arguments for the contemporary approach . . . . . . . . 248

IV The Educational Theory Level 251

16 Dysfunctional Standards 253
16.1 Roles for Standards Documents . . . . . . . . . . . . . . . . . . . 254

16.1.1 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
16.1.2 Textbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
16.1.3 Coordination . . . . . . . . . . . . . . . . . . . . . . . . . 255
16.1.4 Process and Outcomes . . . . . . . . . . . . . . . . . . . . 255
16.1.5 Mathematical Structure . . . . . . . . . . . . . . . . . . . 256
16.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

16.2 More About Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 258
16.2.1 Tests as instruments of terror . . . . . . . . . . . . . . . . 258
16.2.2 Tests as defective standards . . . . . . . . . . . . . . . . . 258
16.2.3 Tests as suppressors of quality and diversity . . . . . . . . 259
16.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

16.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

17 Math / Math-Education Terminology Problems 261
17.1 A Search for Meaning . . . . . . . . . . . . . . . . . . . . . . . . 261
17.2 Misunderstanding Understanding . . . . . . . . . . . . . . . . . . 262
17.3 Right, Wrong or Different? . . . . . . . . . . . . . . . . . . . . . 262
17.4 Plea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

18 Math/Math-Ed Communication 265
18.1 Language differences . . . . . . . . . . . . . . . . . . . . . . . . . 266

18.1.1 Understanding . . . . . . . . . . . . . . . . . . . . . . . . 266
18.1.2 Remembering, recalling, knowing . . . . . . . . . . . . . . 267
18.1.3 Applying, evaluating . . . . . . . . . . . . . . . . . . . . 268
18.1.4 Creating, discovering . . . . . . . . . . . . . . . . . . . . . 269
18.1.5 Teaching vs learning . . . . . . . . . . . . . . . . . . . . . 269

18.2 Mathematics and learning . . . . . . . . . . . . . . . . . . . . . . 270
18.2.1 Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . 270
18.2.2 Human learning . . . . . . . . . . . . . . . . . . . . . . . 270
18.2.3 Math education . . . . . . . . . . . . . . . . . . . . . . . . 271

18.3 Communicating about student preparation . . . . . . . . . . . . 272
18.3.1 Quadratic example . . . . . . . . . . . . . . . . . . . . . . 272
18.3.2 The general pattern . . . . . . . . . . . . . . . . . . . . . 272
18.3.3 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

18.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275



24 CONTENTS

19 Evaluation of Educational Methods 277
19.1 Missing Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

19.1.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
19.1.2 Student effort . . . . . . . . . . . . . . . . . . . . . . . . . 278
19.1.3 Procrastination . . . . . . . . . . . . . . . . . . . . . . . . 280

19.2 Process as a criterion . . . . . . . . . . . . . . . . . . . . . . . . . 281
19.2.1 Multimedia . . . . . . . . . . . . . . . . . . . . . . . . . . 281
19.2.2 Technology as a goal . . . . . . . . . . . . . . . . . . . . . 281
19.2.3 Trendy methods . . . . . . . . . . . . . . . . . . . . . . . 282
19.2.4 NCTM Standards . . . . . . . . . . . . . . . . . . . . . . 283

19.3 Outcome measurement . . . . . . . . . . . . . . . . . . . . . . . . 283
19.3.1 Student variation and statistics . . . . . . . . . . . . . . . 284
19.3.2 Goal selection . . . . . . . . . . . . . . . . . . . . . . . . . 287

19.4 Teaching, learning and errors . . . . . . . . . . . . . . . . . . . . 290
19.4.1 Teacher–centered education . . . . . . . . . . . . . . . . . 291
19.4.2 Error correction . . . . . . . . . . . . . . . . . . . . . . . 291
19.4.3 Repetition . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

19.5 An Obsolete Model . . . . . . . . . . . . . . . . . . . . . . . . . . 293
19.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293



Part I

The Cognitive/Activity
Level

25





Chapter 2

Neuroscience Experiments
for Mathematics Education

November 2010

2.1 Outline

These experiments contrast standard educational approaches that seem to cause
problems, with alternatives adapted to mathematical and cognitive structure.
Many of the alternatives have been used successfully in individual cases, so the
job of neuroscience is not so much to detect the effects as to quantify them
and clarify the mechanisms. Moreover, the tools of neuroscience are difficult
and indirect so specific tasks are designed to maximize expectation of clear
outcomes.

The specific examples might be thought of as opening moves in collabora-
tions, addressed to neuroscientists. They are sensible of the needs and limita-
tions of neuroscience, and informed by neuroscience studies, but for the most
part are not specific about neuroscience protocols because this is the job of
potential collaborators. Cognitive, mathematical, and educational issues are
discussed in some detail because these are responsibilities of the mathematical-
educational partner.

These studies should have significant implications for educational practice. A
companion essay [16](c) explores why educationally-oriented neuroscience stud-
ies to date have had so little impact. In this context, a motivation for developing
high-impact examples was to test this picture, and in particular see if there are
barriers not yet identified.

2.1.1 Background

A few clarifications about background and constraints for these proposals.
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2.1.1.1 Diagnostic experience

These proposals draw on extensive diagnostic work with students. The format is
a session in which a student describes work in which something has gone wrong,
while the helper listens and diagnoses the source of the problem. The helper
then (briefly) explains the error and how to avoid it in the future. This gives
a much finer-grained view of learning and its problems than does traditional
teaching.

A consequence is that the concerns here are only indirectly related to teach-
ing, and are often inconsistent with mainstream (teaching-oriented) ideas about
learning.

2.1.1.2 External working memory

Mathematics uses written scratch work as external working memory, and many
neural processes are adapted to this.

Suppose, for example, that one step in a procedure collects numbers to be
added, and the next step is to add them. The first step is purely symbolic, un-
concerned with specific number properties. The second step requires processing
them as numbers, but little or no engagement of organizational or symbol-
manipulation facilities. The two tasks use different neural processes. Written
work is used for reformatting (different processes read symbols in different, task-
appropriate ways) and inter-process communication. This is much more efficient
and accurate than trying to do it internally.

Consequences for neuroscience studies are:

• Subjects must be able to do scratch work during all procedures.

• A time-stamped record of external work provides a window on internal
activity.

• One goal is to understand the interactions between neural activity and
external memory. Effectiveness can often be substantially improved by
optimizing procedures and notation for external-memory use.

2.1.1.3 Mathematical structure

This is a cautionary note. Mathematical work is both enabled and constrained
by mathematical structure, and experimental design and interpretation must
be carefully adapted to this structure. The discussion here only hints at the
constraints involved, and these should be fully understood before modifications
or variations are undertaken.

2.1.2 Cognitive interference, outline

The four examples in §2.2 concern interference between subtasks of a task. In
a nutshell, mixing or switching between subtasks can reduce success and limit
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scope of application. In some cases procedures or algorithms could be reorga-
nized to separate or eliminate such tasks, but this is constrained by mathemat-
ical structure and the need to avoid introducing new cognitive difficulties. The
challenge is to identify interference severe enough to need change, in circum-
stances where structure permits it.

2.1.2.1 Polynomial multiplication

The example in §2.2.1 concerns conflict between the organization and calcula-
tion aspects of multiplication. The experiment uses multiplication of polynomi-
als by high-school or beginning college students, comparing performance with
standard (mixed-task) methods and a task-separated algorithm. The immedi-
ate outcome should be better methodology for polynomials. A long-term goal
is better methodology for multi-digit multiplication in elementary mathematics,
and this is taken up in §2.3.1. The polynomial version provides a simpler (in
some cognitive senses) and slower (for imaging purposes) model.

The context for the study is task switching between two basic task types.
There is an extensive literature on mechanisms and costs of switching in very
simple tasks, see the review [12]. The ACT–R computer model [1], [2] has
been extensively tested seems to model some elementary tasks reasonably well,
c.f. [20]. The work done so far is only marginally relevant, however. It corre-
sponds, roughly speaking, to discrete behavior of matter at very small scales,
while we are concerned with statistical behavior at significantly larger scales.

A useful general conclusion from cognitive psychology [14] and clearly visi-
ble in small-task studies, is that our thinking is essentially single-track. Ample
working memory and frequent switching between superficial tasks give the im-
pression of “multitasking”, but this is mostly an illusion [24][c]. Specifically, if
we switch from task A to a different task B but know we will shortly be doing
A again, we usually cannot economize by keeping task-A instructions loaded
but off-line. Instead we have to flush task-A material, load B, and when B is
complete, reverse the procedure. Further

• “Flushing” task A may involve inhibiting task-A instructions, not just
emptying a buffer. Some errors (e.g. adding instead of multiplying) result
from incomplete inhibition.

• Residual effects of this inhibition can slow or complicate reloading for the
next A task. In other words, repeated switching reduces the effectiveness
of working memory [11]

• Following an A task by another instance of A usually requires less reorga-
nization and has lower costs.

Algorithms with subtasksABABAB . . . usually cannot be reorganized asAAABBB
for mathematical reasons, but when it is possible it should have cognitive ben-
efits. The multiplication proposal is of this type.
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2.1.2.2 Interference from customary usage

Customary usage often interferes cognitively with mathematical work. This is
usually easy to fix by changing notation, avoiding customary forms, or introduc-
ing translation as an explicit separate step. But customary usage is, essentially
by definition, transparent to adults. As a result the problems caused by it are
invisible, and attempts to deviate from customary usage make adults uncomfort-
able and are resisted. The role of neuroscience is to help locate these problems,
and unequivocally identify them as problems.

For example
√
A is a customary notation for A1/2. The exponential form

fits into general patterns and is usually easier to manipulate. The customary
notation alerts us to the possibility of using special properties of square roots.
The best practice in this case seems to be to use the customary notation so we
get the special-property alert, but teach students that in most problem types
the first step should be to rewrite it in exponential form. In contrast the cus-
tomary notation 3

√
A for cube roots does not have benefits that compensate for

translation overhead. This should always be written as A1/3.
§2.2.3 concerns rather severe problems with customary use of parentheses.

The problem is discussed because it is important and effects several other pro-
posals. No specific experiment is proposed, however, because it has been difficult
to find one with clear and useful outcomes.
§2.2.4 concerns the translation overhead of irregular customary names for

integers (e.g. ‘thirteen’ for 13). Cross-cultural and imaging studies suggest that
short-term working memory is mostly verbal, even when working with numbers.
For instance, the total length of names for things is often a stronger limit than
the number of things. Another clue comes from the additional difficulty children
have in learning to count in languages with irregular customary number names.

A conclusion is that counting and arithmetic might—in some languages at
least—be simplified by the use of “math names” for numbers. The experiment
explores this through its effect on iterated addition.

2.1.2.3 Word problems

The example in §2.2.2 concerns cognitive interference between the modeling
and analysis aspects of word problems. The experiment compares performance
and neural activity in the standard (mixed-task) approach and a task-separated
modeling approach. The short-term goal is to show that the educational ap-
proach is counterproductive. The longer-term goal is to explore ways to use
word problems effectively in elementary education.

Educators see word problems as essentially mathematical; a different for-
mat rather than a different activity. As a result educators encourage a gestalt
approach in which students “develop strategies” to work directly with the for-
mulation of the problem. Students find this hard, and accessible problems have
either mathematical or modeling component (or both) trivial.

Mathematicians and professional users of mathematics split real-world ap-
plications into two steps: ‘modeling’ translates physical data to a self-contained
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symbolic formulation called ‘the model’, and then the model is analyzed math-
ematically. These two steps use very different methods and, technically, the
modeling step is not mathematical. Diagnostic experience with students sug-
gests that modeling and analysis are also quite different cognitively. Mixing
seems to cause interference considerably stronger than that seen in multiplica-
tion, and success in science, engineering, and related mathematics, requires use
of task-separated modeling.

2.1.3 Subliminal learning and reenforcement, outline

We are concerned with learning that takes place during an educational activity
such as a lesson or assignment, but that is invisible to the student, and frequently
to educators as well. There are two variations: subliminal learning from the
content; and learning that depends in an unrecognized way on the structure
(e.g. kinetic or verbal) of the activity.

When mathematics is done by hand, a lot of activity comes as packages
that are activated by simple goals. New methods—especially technology—cause
these packages to come apart, and important subliminal learning may be lost.
For instance “find 365×86” requires a lot of neural activity when done by hand
and rather less when a calculator is used. Is the extra activity pointless, or are
the main benefits in the package rather than the number obtained?

Diagnostic work with students suggests that there is quite a lot of subliminal
learning in by-hand elementary mathematics that is lost in calculator curricula
[16](d). A goal of the experiments is to fix this: understand instances well
enough to design programs that use technology and also provide this learning.
Curiously, this should also enable improvement of traditional programs. Sub-
liminal learning in by-hand work is usually accidental and inefficient. Better
understanding should enable more efficient approaches, either with or without
technology.

The role of neuroscience is this: neural effort in well-learned skills is usually
focused in a small number of regions. Early attempts usually recruit much wider
activity, and development requires exercising the necessary regions and connec-
tions between them, and also requires suppression of recruitment of unneeded
regions. Neural activity alone is not a definitive guide to learning, but it gives
excellent clues:

• Activities that exercise appropriate regions probably contribute to skill
development.

• Activities that do not engage these regions cannot contribute much to skill
development.

• Too much emphasis on activities that consistently engage unnecessary
regions may impede skill development.
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2.1.3.1 Subliminal algebra in integer arithmetic

This experiment concerns subliminal internalization of algebraic structure from
by-hand integer multiplication. The point is that the symbols we write to rep-
resent numbers are symbols, not numbers, and by-hand arithmetic involves a
lot of symbol manipulation. Students seem to internalize some of the algebraic
structure used in these manipulations.

The place-value notation presents integers as polynomials in powers of ten,
with single-digit coefficients. For instance 438 = 4·x2+3·x1+8·x0, with x = 10.
The standard algorithms for multi-digit multiplication essentially multiply the
corresponding polynomials and then evaluate at 10.

The experiment in 2.3.1 has two parts. The first compares neural activity
in 3× 3-digit multiplication by hand, and with a calculator. An objective is to
see to what extent the hand work recruits neural regions used in algebra, and
more specifically in polynomial multiplication.

The second part explores the use of a task-separated algorithm modeled
on the polynomial algorithm of §2.2.1. The first version is for hand use. It
requires more writing than the traditional algorithm but should display the
structure more clearly and be easier to use accurately. The second version uses
a calculator, but in a way that still requires expansion and display of algebraic
structure. The objectives are to assess potential cognitive benefits by comparing
neural activity with that associated to standard by-hand multiplication.

There are many studies of numerical multiplication, c.f. [9, 20]. Unfortu-
nately conceptual and methodological weaknesses [21], [16](c) render these only
marginally relevant.

2.1.3.2 Subliminal learning of number facts

Examples illustrating mathematical procedures almost always have arithmetic
subtasks. If these subtasks can be done transparently then new features can be
seen and, conversely, if the subtasks require serious breaks in attention then new
features will be obscure. A certain amount of transparent mental arithmetic is
therefore vital for learning in algebra and beyond.

For instance, the example used to illustrate the task-separated polynomial
multiplication algorithm in §2.2.1.2 has coefficients contrived so that the cal-
culation steps should be very easy, but still display the structure of the algo-
rithm. We presume that much more complex problems could be worked once
the algorithm is understood, even if coefficient calculations required the use of
calculators or extensive scratch work. Transparency, however, is necessary for
initial learning.

The amount of mental arithmetic needed is a compromise between what stu-
dents can learn relatively easily, and how simple the examples can be contrived
to be and still effectively illustrate structures. The standard compromise is:

• Fully-automatic addition and subtraction of single-digit integers.
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• Addition of four or five single-digit integers, or one two-digit and one
three-digit integer.

• Multiplication of a single-digit and a two-digit integer.

Further, the structure of arithmetic should be automatic enough that a few
symbols will not cause a problem.

Slightly more complex tasks, such as multiplying a one-digit and a three-
digit integer, should be a minor distraction. Multiplying two 2-digit integers is
cognitively more complex (see §2.2.1.1) so it is worth going to some lengths to
avoid it. It seems likely that a better algorithm would put larger addition prob-
lems within easy reach, see §2.2.1.5, but this does not seem to be a bottleneck
in actual use.

A consequence is that calculators cannot substitute for automatic recall of
single-digit multiplication facts. This does not mean we are stuck with rote
memorization, however. The proposal in §2.3.2 section explores a subliminal
approach using the algorithm described in §2.3.1.

2.1.3.3 Kinetic reenforcement in graphing

This experiment concerns reenforcement of internalization of geometric struc-
ture of function graphs, by the kinetic aspect of by-hand graphing. In non-
technology programs, both assignments and testing require drawing by hand.
In programs using technology, student work has visual outcomes, and testing is
also usually visual (choose the correct graph among a number of alternatives).

Diagnostic experience suggests that many graphing-calculator trained stu-
dents cannot either verbally describe or qualitatively sketch standard curves.
When they do try to draw pictures they often reproduce a calculator display,
to scale, with typical poor choices of range and microscopic features of interest.
In other words they have not internalized the qualitative geometric structure.
It seems that the kinetic aspect of drawing powerfully (and subliminally) reen-
forces learning of qualitative structure, and some students seem unable to learn
without this reenforcement.

A general context is that serious learning benefits from, and often requires,
active reenforcement. Recent studies ([18], [19]) report that young children do
not learn from videos. To learn vocabulary, for instance, they must say the
word, not just hear it. Verbal reenforcement seems to be more effective when
‘social cognition’ facilities are engaged by the presence of an attentive human,
and this may be the primary mechanism in some cases. None of this should
be a surprise. Children in rural areas learn their local dialects but usually not
(in the US) standard English, even though they hear as much or more standard
English on television. Similarly, what a child sees makes far less impression that
what he draws or writes himself.

The experiment uses two versions of a brief lesson on qualitative graphs of
sums of functions [[draft note: task to be changed]]. The first version uses a typi-
cal visual computer-graphic approach, and the second a hand-drawing approach.
Students are quizzed using version-appropriate methods: visual multiple-choice
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in the first case, drawing in the second. Finally they are tested with the opposite
methodology.

The questions concern similarity and differences in neural activity in the
two modes, and transfer of learning from one mode to the other. Diagnostic
experience suggests that kinetically-reenforced learning should transfer, visual
learning usually will not. This experiment is more complex than the others
because the questions concern neural activity during learning, not just during
use of a learned procedure.

This is the end of the outline.

2.2 Cognitive interference

Mixing different tasks often slows and degrades performance in both. It seems
likely that such interference has a neural basis. Understanding this should enable
design of algorithms and procedures better adapted to humans use, mainly by
separating internal tasks and using scratch work for reformatting and high-
precision interprocess communication. The proposals address two instances in
which interference has been observed: multiplication and word problems. See
§2.1.2 above for an outline.

2.2.1 Cognitive interference in multiplication

There are two important cases that use essentially the same algorithm: multi-
digit integer multiplication in elementary school, and polynomial multiplication
in high school and college. We begin with polynomials because:

• the polynomial version is actually a bit simpler because there are no over-
flow problems associated with converting polynomial-like outcomes into
place-value integer notation;

• the separated polynomial tasks take long enough to be imaged by fMRI,
and this is unlikely with integer multiplication;

• more-extensive scratch work (external working memory) can be used to
correlate cognitive and neural activity;

• high-school or college students are more consistent and cooperative exper-
imental subjects;

• arithmetic skills of older students are already well-established and stable,
and should produce clearer and more consistent signals.

Another reason to begin with polynomials is that the problem seems to involve
a genuine limit on human ability: experienced professors of mathematics seem
to have as much trouble as students with the mixed-task algorithm, and get
as much benefit from the task-separated version. This should mean that the
underlying neural issues should be relatively uniform and clear. In contrast,
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the interference experienced by children with multi-digit integer multiplication
can be eventually be managed, so may have a developmental component. In
fact there are likely to be a number of different difficulties, and before we can
assess any of them we must understand the mature endpoint. Further, the
proper course of action may be unclear. If the problem is only developmental
then finding ways to speed development would probably be more useful than
tinkering with algorithms.

The integer case is discussed further in §2.3.1. Detailed mapping of compo-
nent functionality is discussed in [16](e).

2.2.1.1 Sample problems

These examples show escalating conflict between organization of the polynomial
structure, and coefficient arithmetic. Coefficients are contrived so individual
operations are easy; difficulties come from mixing rather than from individual
operations.

1) Write (3x2) ((2− a)x3) as a polynomial in x.

Note that “simple arithmetic” in coefficients may include symbols, to emphasize
that we need transparent internalization of structure (associative, distributive
etc.), not just number facts. This example has one coefficient operation and one
polynomial operation: they are perforce separated and there is little conflict.

2) Write (3x2 − x+ 5a) ((2− a)x3) as a polynomial in x.

The result has three terms. The standard practice is to do coefficient arith-
metic as each term is generated, so there are two arithmetic interruptions of
the polynomial procedure. There is relatively little interference, partly because
there are few interruptions. Another reason is that the structure of first term
provides a template for sequential organization of the task. Minor interference
is suggested by more-frequent sign mistakes with the −1 coefficient on x in the
first term, as compared to errors in isolated arithmetic tasks.

3) Write (3x2 − x+ 5a)(x3 + (2− a)x2 − a) as a polynomial in x.

Simple expansion gives nine terms, with eight interruptions for coefficient arith-
metic. Moreover the data is a 3 × 3 array so a strategy for organization as a
sequential task must be devised. Finally, terms with the same coefficient have
to be collected and combined. The success rate is low and errors in both orga-
nization (missed terms) and arithmetic are common. The difficulty comes from
the algorithm rather than the problem itself, however, as we see next.

2.2.1.2 Task-separated algorithm

The basic plan is to separate different tasks as completely as possible. In poly-
nomial multiplication, organizational work related to the polynomial structure
should be completely separated from coefficient arithmetic, and multiplication
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and addition separated in the arithmetic. This is illustrated with problem (3)
above: write

(3x2 − x+ 5a)(x3 + (2− a)x2 − a)

as a polynomial in x.

Step 1 A preliminary scan shows that the output will be a polynomial of degree
5. Set up a template for this:

x5( ) + x4( ) + x3( ) + x2( ) + x1( ) + x0( )

Step 2 Fill in the blanks one at a time. For example, the terms with total
exponent 3 are obtained as follows: the highest-order term in the first
factor is x2; record its coefficient (3). The complementary exponent is 1,
but there is no x1 term in the second factor so we record 0. Move to the
next lower power in the first factor and the next higher in the second, and
record coefficients (−1)(2 − a). Continue to get ((3)(0) + (−1)(2 − a) +
(5a)(1). Put everything in parentheses, and not do any arithmetic on the
fly. Do not, for example, omit the 3 coefficient on x2 because there is no
complementary term in the second factor, and do not write (5a)(1) as 5a.

• This enables reading the coefficients only as strings to be copied, with
no arithmetic significance. This reduces cognitive overhead.

• Even completely trivial arithmetic requires a momentary change of
gears, and watching for an opportunity to do it is a distraction.

The outcome is:

x5((3)(1)) + x4((3)(2− a) + (−1)(1)) + x3((3)(0) + (−1)(2− a) + (5a)(1))+

x2((3)(−a) + (5a)(1)) + x1((−1)(−a)) + x0((5)(−1))

Step 3 Do multiplications:

x5((3)(1)︸ ︷︷ ︸
3

)+x4((3)(2− a)︸ ︷︷ ︸
6−3a

+ (−1)(1)︸ ︷︷ ︸
−1

)+x3((3)(0)︸ ︷︷ ︸
0

+ (−1)(2− a)︸ ︷︷ ︸
−2+a

+ (5a)(1)︸ ︷︷ ︸
5a

)+. . .

The process and notation is designed to avoid organizational activity:
input for each operation is in standard position in the visual field, the
underbrace specifies the input so it does not have to be reconstructed for
other steps or checking, and output is put in a standard place.

Step 4 Do additions.

x5((3)(1)︸ ︷︷ ︸
3

)+x4 ((3)(2− a)︸ ︷︷ ︸
6−3a

+ (−1)(1)︸ ︷︷ ︸
−1

)

︸ ︷︷ ︸
5−3a

+x3 ((3)(0)︸ ︷︷ ︸
0

+ (−1)(2− a)︸ ︷︷ ︸
−2+a

+ (5a)(1)︸ ︷︷ ︸
5a

)

︸ ︷︷ ︸
−2+6a

+ . . .

Again the process and notation minimize organizational activity that
would interfere with arithmetic.
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2.2.1.3 Experiment

The subjects should be high-school students who have been successful in a
standard algebra curriculum, or students in first-year college calculus (i.e. not
remedial). Proficiency with problems like (2) above might be used as a criterion.
They should also be screened for dependence on calculators for basic arithmetic
(see below). They are asked to work problems similar to the one above, using
standard methods. They are then taught the task-separated version, and after
enough practice to become familiar with it, they are imaged working similar
problems with this methodology.

• To keep the picture clear the arithmetic should be kept minimal. Multipli-
cation of multi-digit integers, for instance, would produce a small version
of the entire process.

• Half the problems should have numerical coefficients, half have symbols
in the coefficients (as in the example).

• Subjects should be told that accuracy is more important than speed. Er-
rors due to speed or carelessness will mask significant features of more
intrinsic mistakes [17, 7, 6].

• Scratch work should be videotaped and time-stamped, for correlation with
imaging results.

fMRI should provide general information about the areas used and the degree
of usage, c.f. [9, 20]. It would be useful if there is an easily-identified MEG
or EEG signature of major task switching—a mental shifting of gears—in the
task-separated versions, c.f. [22].

2.2.1.4 Calculator version

The core experiment concerns students with good manual arithmetic skills. If
resources permit, it can be expanded to include students with similar proficiency
but who use calculators for numerical work. Let them use calculators as they
like during the trials, and record this use. Expected differences are described
below.

2.2.1.5 Analysis

The basic plan is to look for neural and performance differences between the
standard and task-separated versions. The expectation (based on diagnostic
work with students) is that performance should be significantly better with the
task-separated version, and the hypothesized reason is that the task-separated
version reduces interference caused by arithmetic interruptions of the polynomial
organizational task. A qualitative picture should emerge reasonably quickly. It
might be possible to directly explore interruptions and their short-term neural
consequences by carefully correlating imaging with scratch work.
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The above is the basic plan. We now discuss potential complications and
refinements.

First, there may be a sub-population with substantially better performance
with the modified algorithm. The goals are algorithms that benefit everyone
when used as the standard approach, but it is unlikely that everyone will bene-
fit when they are used as a retrofit. The cognitive interference signal should be
clearest in the high-performance group. Note that subjects cannot be screened
in advance for quick adaptation because the control experiment (using stan-
dard techniques) becomes impossible after the modified algorithm is taught.
Predictors of success found after the fact, however, would certainly be useful.

Calculator arithmetic requires a significant attention shift and input/output
processing, and there are a great many discrete arithmetic tasks in these prob-
lems. It is hard to imagine that calculator use could become so transparent
that this would not be a source of interference. The prediction, therefore, is
that students who actually make substantial use of calculators during the trials
will have low success with any form of these problems.

Next, if at all possible, individual variation in the task-separated version
should be investigated. Currently the statistical techniques used to analyze
data have a built-in assumption that everyone does these things in essentially
the same way. Variation is treated as noise. The data showing that multipli-
cation facts are stored in the angular gyrus using verbal memory, for instance,
demonstrates that this is the dominant mode. But is it really true that no-one
uses visual memory for this? Understanding variation in successful learning is
essential for understanding all the barriers to success, and the separated tasks
may be long and uniform enough to permit this. Again, students who use
calculators are likely to have significantly different characteristics.

The number and nature of mistakes made is more significant than time re-
quired to complete the tasks. Time measurements might be useful for comparing
different task instances done by one individual, however.

Finally, it will be very important to assess the effects of symbols in the coef-
ficients. The hypothesis suggested by behavioral data is that students who have
effectively internalized the symbolic structure of arithmetic should show little
difference in either performance or neural activity. There is some support for
this in very simple tasks [2], [23]. Conversely, students who have not internalized
this structure, or who think of symbols and numbers as essentially different, will
find symbolic coefficients significantly more difficult. Most calculator users are
likely to be in this group.

2.2.2 Cognitive interference in word problems

The modeling and analysis components of word problems seem to interfere when
mixed, and this interference is often very strong. This is explored through
comparison of student work using standard (mixed-task) and modeling (task-
separated) procedures. See §2.1.2.3 for discussion.
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2.2.2.1 Sample problem

The following have the same mathematical core.

Food version A basket contains six loaves of bread. Half of these are put in
another basket that already contains nine loaves. Then one-third of the
total contents of the second basket is put in the first. How much bread
ends up in the first basket?

Social version Jen and Brad have six loaves of bread. Brad takes half with
him when he leaves to share everything with Angelia, who already has
nine loaves. Jen’s lawsuit against Brad and Angelia is settled by giving
her one-third of Brad and Angelia’s bread. How much bread does Jen end
up with?

Money version A basket contains six dollars. Half of these are put in another
basket that already contains nine dollars. Then one-third of the total
contents of the second basket is put in the first. How much money ends
up in the first basket?

These are easy to model and solve, but difficult with the gestalt approach be-
cause interpretation and calculation are mixed.

2.2.2.2 Task-separated (modeling) version

Let A denote the bread in the first basket, with subscripts 1, 2, 3 correspond-
ing to the three times. Bi similarly denotes the bread in the second basket.
Translating the data for the beginning state gives:

A0 = 6, B0 = 9.

Changes that give the second state translate as:

A1 = A0 −
1
2
A0, B1 = B0 +

1
2
A0.

Finally changes that give the third state give:

A2 = A1 +
1
3
B1, B2 = B1 −

1
3
B1.

This is a symbolic form (model) suitable for mathematical analysis. After do-
ing a few of these they become immediately recognizable as short recurrence
relations.

Analysis proceeds in two stages; first substitute in two steps to reduce to a
numerical problem:

A2 = A1 +
1
3
B1 = (A0 −

1
2
A0) +

1
3

(B0 +
1
2
A0) = 6− 1

2
(6) +

1
3

(9 +
1
2

(6))

and finally do the the arithmetic. See §2.2.2.5 for discussion of cognitive and
conceptual features.
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2.2.2.3 Experiment

The subjects are high-school students who have been successful in a standard al-
gebra curriculum. They are imaged working problems similar to the ones above.
They are then taught the task-separated version, and after enough practice to
become familiar with it, they are imaged working similar problems with this
methodology. They should be asked to give the model as part of the solution
(to ensure actual separation), and some problems should ask only for the model.

In both trials, problems to be worked should be interspersed with controls
in which students are asked only to identify problem type (food, social, etc.).

Finally, subjects should be interviewed before and after the imaging trials.
Pre-trial questions would concern attitudes toward word problems (enjoy, dread,
etc.), neutrally probe reasons (actually interesting, easy grades because the
math is trivial, believe teachers’ assertion that they are important, etc.), and
ask the subject’s impression of his general competence and success rate. Post-
trial questions would include feelings about task separation (helps, is a waste of
time), and assess changes in interest and feelings of competence.

There are two points to the interviews. First, is there a correlation between
reduced cognitive interference and increased interest or confidence? Second, the
main justifications for word problems are motivation and relevance, because the
analytic tasks are trivial. It is therefore important to assess how a procedural
change might effect these.

2.2.2.4 Analysis

Unseparated work should show extensive activity, probably including prefrontal
recruitment to sort out confusion from interference. Active areas will probably
depend on the nature of the problem, and different types should be analyzed
separately to see this. The social version, for instance, should engage neural
structures devoted to interaction with others of our species. Comparison with
type-identification versions should reveal activity specific to the mathematical
task. Questions:

• Do some types interfere with mathematical activity more strongly than
others (i.e. have lower success rates)?

• Do different types lead to differences in the mathematical components, as
revealed by subtracting type-identification responses?

• Is there systematic variation, for instance sex differences in responses to
social versions, or socioeconomic level effects in responses to food or money
versions? If so, how do these correlate with success rates?

Subtasks in unseparated work will have irregular timing and sequencing, and
will be hard to image. This is not a big problem.

Task-separated versions should show clearly-defined shifts between modeling
and analysis. Questions are:
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• How do the areas and degrees of activation compare to the non-separated
versions? For instance, are the same areas used, just in sequence rather
than simultaneously?

• Modeling has some symbolic activity, and this should be revealed by sub-
tracting type-identification responses. Where does this take place, and is
it essentially the same for all problem types?

• The symbolic aspect of modeling seems not to interfere with other parts
of the process, as long as no analysis is done. Is this true on the neural
level, or does it reveal interference too mild to be obvious?

2.2.2.5 Further discussion

The immediate cognitive benefit of the task-separated version is that translation
and analysis are both routine and reliable, and can be extended. Adding another
layer, for instance if Brad goes back to Jen and there is another redistribution of
bread, could easily be done in the task-separated version but would be a serious
challenge with the gestalt approach.

Modeling also has conceptual benefits. The model displays the mathematical
structure as a recurrence relation rather than a sequence of arithmetic opera-
tions. Similar models describe superficially different problems, showing the un-
derlying unity and demonstrating the power of abstraction. It can be connected
to other methodologies, for instance vectors and matrices: set C = (A,B) and
the model becomes

C0 = (6, 9)

C1 =
(

1/2 0
1/2 1

)
C0

C2 =
(

1 1/3
0 2/3

)
C1

Multiplying the coefficient matrices gives a direct description of output from
input and enables exploration of the relationship. Is there an initial distribution
that leads to exactly the same final distribution? In another direction, one can
also see how a large number of “players” could give a cellular automaton.

Finally, modeling can be a rich activity even when students cannot analyze
the model. For instance as soon as ‘rate of change’ is introduced they could
model physical systems as differential equations, and then see computer graphs
of solutions. Or they might be motivated to learn relevant analytic techniques.

2.2.3 Interference from customary usage of parentheses

Grouping of sub-expressions is an essential part of the structure of most math-
ematical expressions. Further, parsing expressions should follow this structure
from the outside in: locate outermost groups and their relationships, then find
immediate subgroups of these, and so on down to indivisible components.

Customary usage interferes cognitively with mathematical work in two ways:
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• The customary parsing order used in reading (left to right in English) is
almost always different from mathematical parsing order.

• The customary parenthesis notation does a bad job representing grouping:
the opening ‘(’ and closing ‘)’ of a group are mathematically connected,
but they have to be found by preliminary parsing (usually using reading
order) because they are not notationally connected.

Current practice in elementary education is to avoid the issue by avoiding the
use of grouping, and largely sticking with reading parsing order. This has un-
fortunate consequences:

• Most expressions cannot be written without grouping notation, so scope
is very limited.

• On-the-fly arithmetic is often necessary to avoid intermediate expressions
that require grouping. The task-separated multiplication algorithm used
in §2.2.1, for instance, requires extravagant use of parentheses. As a result
the cognitive costs of task-switching cannot be avoided.

• Parenthesis-avoidence is embedded in goals: the customary meaning of
“simplify” is essentially “find an equivalent expression without parenthe-
ses”. This interferes with more intelligent goals in later work.

• Students do not learn how to parse non-trivial mathematical expressions.

We suggest fixing the notation rather than avoiding it. In 2.3.1.4 the underbrace
used in §2.2.1.2 to indicate outcomes of evaluation is used to connect parenthe-
ses. This is not a good general solution because the underbrace is a powerful
way to indicate subexpressions being manipulated, and these subexpressions
usually do not correspond to parentheses. A better approach would be to join
matching parentheses with an underline:

A+B
(
C −D (E + F )

)
.

This seems to address the problems, but it would have to be extensively tested
and explored before it could be promoted as a “solution”.

It is quite easy to design experiments to probe the effects described above.
However no experiment is suggested here because this is a complex issue, and
we have not identified a key or especially revealing special case.

2.2.4 Interference from customary integer names

The English name for 513 is “five hundred thirteen”. This might be shortened
to “five thirteen”, but not to “five one three”. It seems likely this interferes
with mental arithmetic in two ways: first through overhead in translating 13 to
“thirteen” and back, and second because “thirteen” is a cognitive unit that has
to be disassociated into two digits for arithmetic processing.
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The proposal is to see if the use of “math names” for integers to reduce
cognitive overhead associated with customary names improves modest mental
addition. The math name is simply the sequence of names of the digits: 513 is
“five one three” for example. The other novelty is use of verbal working memory
to store the running total, to reduce interference with single-digit operations.

2.2.4.1 Example

To do the addition 367 + 12 + 57 do the following:

• say“three six seven” out loud, to read it into verbal working memory;

• next add the 1 digit in 12 to the running total. Unless there is an overflow
this changes only the 101 digit, so the new total will be “three, (new digit),
seven”. Begin by saying “three”, then think ‘six is the running-total digit
and 6+1 = 7’ say “seven”, and finish with “seven” from the running total.
The digits said out loud are the new running total.

• next add the 2 in 12. This usually changes only the 100 digit in the
running total so first say “three seven” from the current total, think ‘seven
is running-total digit and 7 + 2 = 9’ and say “nine” out loud.

• now proceed to the 5 digit in 57. The verbal running total is “three seven
nine” and we expect the seven to change. Say “three”, think ‘seven is next
running-total digit and 7 + 5 = 12’. There is an overflow that increments
the previous digit by one so overwrite the “three” by saying “four”, then
new-digit “two”, then “nine” from the running total.

• finally add the 7 digit in 57. Current total is “four two nine”. Begin with
“four two” from the total, think ‘nine, and 9 + 7 = 16’. The overflow
changes the 101 digit so update this by saying “four three”, and then the
new digit “six”.

In this context the interference-reducing strategies can be made more explicit.
First, the digits are added one at a time, so using math names avoids conflict
with common names that combine digits. Second, verbal-auditory short-term
memory is distinct from the working memory used for single-digit operations.
It may take practice to access it independently. For instance in the second step
above, after the addition one must recall the final digit ‘seven’ that was stored
before the operation. It might help to think ‘what was the final digit I heard
myself say?’

Another helpful learning strategy is to refresh the running total between
major steps. For instance the operation 367 + 12 ends saying “three seven”
and then “nine” while adding the 2 digit. Repeating “three seven nine” before
beginning the next step helps prevent erosion during preparation for the next
step.
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2.2.4.2 Experiment

The plan is to compare accuracy and neural activity of mental addition using
customary methodology, and with the method described above.

Subjects can be selected as in previous experiments, and should be screened
for automatic facility with single-digit sums. Imaging should be preceded by a
practice session to refresh use of customary skills.

In the first imaging trial subjects are asked to do tasks mentally (no external
working memory) using customary methodology. Tasks (described below) are
presented visually and answers are given verbally. There are no time constraints
and they are asked to be as accurate as possible.

Subjects are then taught the reduced-interference procedure described above,
and practice enough to become reasonably proficient. The imaging trial is then
repeated with this methodology.

2.2.4.3 Outcomes, and task selection

The reduced-interference version should enable significantly higher accuracy for
some problem types. For instance with practice it should be possible to start
with a four-digit integer and add ten two-digit integers, a feat almost impossible
to do accurately with traditional methods. This is not a particularly useful
skill, however, so the experiment goal is quantitative comparison with smaller
problems.

Tasks should be designed so the two methods have clear differences in out-
comes and imaged activity. With high-school or beginning-college students it
seems likely that adding three 2-digit integers to a 3-digit integer (e.g. 367 +
12+57+24) would do this, but task design should be explored with preliminary
trials.

The objective of neural imaging is to guide long-term applications of the
approach. First, the expectation is that using ‘math names’ for integers from
the very beginning would make arithmetic easier for young children. Designing
and conducting a trial extensive enough to show clear behavioral advantages
would be a huge undertaking. However neural correlates identified in trials with
older children might be detectable before behavioral differences are clear. This
would enable preliminary studies, and refinement of techniques before full-scale
trials.

The method here also employs short-term verbal memory to augment in-
ternal working memory. Written external memory is the standard way to do
this, and is so effective that it will be the method of choice in nearly all cases.
However there are cases where an alternative is useful, and this study provides
a starting point for explicit exploration of an alternative.

2.3 Subliminal learning and reenforcement

Human brains are complex, and the relative lack of integration in childrens’
brains means early learning has additional complexity. The fact is well-known
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but many of the details are invisible to adults. The proposals concern sublimi-
nal learning of algebraic structure in by-hand arithmetic, and reenforcement of
qualitative geometric structure in by-hand graphing of functions. Both of these
are usually lost in calculator-oriented programs. The goal is to understand these
well enough to design programs in which subliminal learning and technology can
coexist.

2.3.1 Subliminal algebra in integer multiplication

The first part of the experiment compares multiplications done by hand and
with a calculator. This is to establish bases for comparison in the second part,
and to compare the by-hand activity with algebraic manipulation. The second
part compares two versions of a task-separated algorithm: one by hand, and
one with primitive computational support. See the discussion for explanation.

2.3.1.1 Experiment, part one

Subjects should be high school or beginning college students, with reasonable
facility with both calculators and hand arithmetic.

The tasks are to find 3 × 3-digit products (e.g. 946 × 735) either by hand
using the method they were taught in school, or with a calculator, as directed.
Answers should be written in either case. They should be told that accuracy is
more important than speed.

2.3.1.2 Discussion, part one

The number of digits is chosen so by-hand work will fully engage the algorithmic
structure, but not be overwhelmed by written intermediates.

Neural activity in the calculator case should be input/output and translation
of digits to key presses. Little or no numerical or symbolic activity is expected.
By-hand multiplication should show input-output, number-fact recall, and orga-
nizational activity. The interesting questions concern the organizational activity
and errors; see the discussion for part two.

2.3.1.3 Experiment, part two

Subjects are taught to use a task-separated multiplication algorithm modeled
on polynomial multiplication, and a final assembly (see below for notation and
an example). The experiment has two versions:

• Use the algorithm to reduce 3 × 3-digit products to 1 × 1-digit products
and additions. Carry these out by hand.

• Use the algorithm with 2-digit blocks (see 2.3.1.5) to reduce 6 × 6-digit
products to 2 × 2-digit products and additions. Carry these out with a
calculator.
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2.3.1.4 Single-digit algorithm

The place-value notation describes integers as polynomials in powers of ten with
single-digit coefficients. For example 946 = 9x2+4x1+6x0, evaluated at x = 10.
The plan is to multiply using the polynomial algorithm of 2.2.1.2, then evaluate
at powers of ten. Some care with notation is necessary.

We can avoid writing numbers explicitly as polynomials, by writing the

exponent over the digit: use
2
9 as a shorthand for 9 × 102. For instance to

compute 946× 735 write
2
9

1
4

0
6 ×

2
7

1
3

0
5

Next write a template for the organizational step:

4∗ ( )︸ ︷︷ ︸+
3∗

 
︸ ︷︷ ︸

+
2∗

 
︸ ︷︷ ︸

+
1∗

 
︸ ︷︷ ︸

+
0∗ ( )︸ ︷︷ ︸

Note that parentheses are connected by underbraces that will eventually be used
to indicate outcomes. The polynomial model only has the parentheses at this
stage, but disconnected parentheses are problematic in elementary education
(see 2.2.3). As above

2∗ is used as a shorthand for 102, but it is not clear this is
a good idea.

Collect coefficient products for each total coefficient 0–4:

4∗ (9 · 7)︸ ︷︷ ︸+
3∗

9 · 3 + 4 · 7


︸ ︷︷ ︸

+
2∗

9 · 5 + 4 · 3 + 6 · 7


︸ ︷︷ ︸

+
1∗

4 · 5 + 6 · 3


︸ ︷︷ ︸

+
0∗ (6 · 5)︸ ︷︷ ︸

Then do the multiplication and addition (in separate stages):

4∗ (9 · 7)︸ ︷︷ ︸
63

+
3∗

9 · 3︸︷︷︸
27

+ 4 · 7︸︷︷︸
28


︸ ︷︷ ︸

55

+
2∗

9 · 5︸︷︷︸
45

+ 4 · 3︸︷︷︸
12

+ 6 · 7︸︷︷︸
42


︸ ︷︷ ︸

99

+
1∗

4 · 5︸︷︷︸
20

+ 6 · 3︸︷︷︸
18


︸ ︷︷ ︸

38

+
0∗ (6 · 5)︸ ︷︷ ︸

30

Finally, assemble the pieces by writing them in offset rows and adding:

0 3 0
1 3 8
2 9 9
3 5 5
4 6 3

sum 6 9 5 3 1 0

The left column contains the exponent, which is also the offset.
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2.3.1.5 Block algorithm

Multiplication using 2-digit blocks begins by expressing integers as polynomials
in 102 with 2-digit coefficients. For instance 638521 = 63x2 + 85x1 + 21x0, with
x = 100. A 6 × 6-digit product thus becomes a 3 × 3-block product, and uses
the same format as above.

Example Use 2-digit blocks to find 638521× 997201.

As above we avoid writing explicit polynomials by spliting into blocks and
recording the exponent over each block:

2
63

1
85

0
21 ×

2
99

1
72

0
01

Next collect coefficient products for each total coefficient 0–4, and do the coef-
ficient arithmetic with a calculator:

1004(63 · 99︸ ︷︷ ︸
6237

) + 1003 (63 · 72︸ ︷︷ ︸
4536

+ 85 · 99︸ ︷︷ ︸
8415

)︸ ︷︷ ︸
12951

+1002 (63 · 01︸ ︷︷ ︸
63

+ 85 · 72︸ ︷︷ ︸
6120

+ 21 · 99︸ ︷︷ ︸
2079

)︸ ︷︷ ︸
8262

+ · · ·

Note we are explicitly writing powers of 100 instead of the shorthand used in
the single-digit case.

The final step is to assemble the pieces by writing them in offset rows and
adding, as above.

2.3.1.6 Discussion

The traditional algorithm has been optimized for production use by experienced
users, by minimizing the writing needed. Essentially any modification will be
less efficient. But production arithmetic is no longer done by hand, so improved
cognitive benefits may well justify some loss of efficiency. The goal of this
experiment is to assess the cognitive benefits of the expanded algorithm.

In actual practice the efficiency/clarity tradeoff should mean that many fewer
problems are assigned, but a success rate of 100% (after locating and correcting
errors) would be expected. The presumption above is that single-digit multipli-
cations would be done mentally, but see the next section for an alternative.

The two-digit block version would be used to lead students (subliminally) to
separate the structural pattern from the blocks (i.e. not think of the algorithm
as something special about digits). The result should be an effective template
for multiplication of polynomials or other compound expressions in algebra.

Finally, advanced students, or group projects, can use the 4-digit block ana-
log to multiply integers with 15 or more digits using ordinary calculators; see
§3.1.1 of [16](a).

2.3.2 Subliminal learning of number facts

The goal is to have students learn single-digit products subliminally and in
context rather than by explicit memorization.
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The context is the task-separated algorithm described in §2.3.1.4. Students
would be given a multiplication table on a card, see Figure 1, and given mul-
tiplication problems beginning with 1 × 1-digits and working up to 3 × 3. In
multi-digit cases they would do the organizational step to reduce to single-digit
products. Then they would do the batch of single-digit products, using the card
for ones they do not remember. Remembering has payoffs in faster work and
avoiding attention breaks. If cards and procedures are well-designed for sublim-
inal assimilation then children would learn these fairly quickly and painlessly.

Behavioral studies can incrementally improve design of cards and procedures.
The job of neuroscience is to guide improvements that educators will not reach
by incremental changes. Examples illustrated in the card in Figure 1:

• Students should be instructed to read the entry out loud each time they
use the card, to provide verbal reenforcement and because most people
store multiplication facts in verbal memory.

• The entries on the card are complete segments to be read, not just the
answer.

• Entries are designed for accurate recall. For instance ×7, 5; 35 for 7 ×
5 = 35 begins with the operation (×) because beginning with 7 invites
confusion with 7 + 5 = 12.

• Two-digit answers should probably be read as digits rather than customary
names, to avoid translation overhead (§2.2.4).

• “Equals” is omitted to shorten the entry and because it is redundant in
context. Emphasis can be used as a substitute to clarify the separation
between input and output, e.g. read ×7, 5; 35 as “times seven, five; three
five”.

Finally, neuroscience studies have confirmed that incorrect internalizations quickly
become very difficult to correct [5] [3]. It is therefore vital that they be found
and fixed as soon as possible. To accomplish this, every assignment be checked
for correctness, and students required to locate and correct errors in their work
record. (Recall that this approach would use fewer assignments than is now the
custom.) Always having to find errors also provides consistent reenforcement
for accuracy and good work habits.

2.3.2.1 Experiment

Most of the neuroscience input for this topic will be inference from other studies
(e.g. put the operation first). Experiments like the one suggested here might
fine-tune the ideas, but serious evaluation must wait on classroom trials.

Subjects would be children (perhaps fourth grade) who are successful with
standard arithmetic. The task is to perform the organizational step of the task-
separated multiplication algorithm, and use the multiplication card to carry out
the multiplication step. The addition step would be omitted. There should be
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2 ×2, 2; 4 ×2, 3; 6 ×2, 4; 8 ×2, 5; 10 ×2, 6; 12 ×2, 7; 14 ×2, 8; 16 ×2, 9; 18
3 ×3, 2; 6 ×3, 3; 9 ×3, 4; 12 ×3, 5; 15 ×3, 6; 18 ×3, 7; 21 ×3, 8; 24 ×3, 9; 27
4 ×4, 2; 8 ×4, 3; 12 ×4, 4; 16 ×4, 5; 20 ×4, 6; 24 ×4, 7; 28 ×4, 8; 32 ×4, 9; 36
5 ×5, 2; 10 ×5, 3; 15 ×5, 4; 20 ×5, 5; 25 ×5, 6; 30 ×5, 7; 35 ×5, 8; 40 ×5, 9; 45
6 ×6, 2; 12 ×6, 3; 18 ×6, 4; 24 ×6, 5; 30 ×6, 6; 36 ×6, 7; 42 ×6, 8; 48 ×6, 9; 54
7 ×7, 2; 14 ×7, 3; 21 ×7, 4; 28 ×7, 5; 35 ×7, 6; 42 ×7, 7; 49 ×7, 8; 56 ×7, 9; 63
8 ×8, 2; 16 ×8, 3; 24 ×8, 4; 32 ×8, 5; 40 ×8, 6; 48 ×8, 7; 56 ×8, 8; 64 ×8, 9; 72
9 ×9, 2; 18 ×9, 3; 27 ×9, 4; 36 ×9, 5; 45 ×9, 6; 54 ×9, 7; 63 ×9, 8; 72 ×9, 9; 81

Figure 2.1: Multiplication Card

enough pre-trial practice to learn the procedure but not enough to internalize the
card material. Then subjects would be imaged working problems, and locating
and correcting errors in incorrect problems.

The first objective is to track internalization of the table. These students
will already know single-digit products in another format, but if they are in-
structed to use the cards (especially reading entries out loud) then they will
probably internalize the new format rather than translate what they already
know. Patterns in successful internalization might help refine the procedure.

The second and more important objective is to track error handling. It is
well-established that internal uncertainty about correctness causes delays and
unusual patterns of activity [7, 6, 4, 17]. For operational purposes we call an
internalization “bad” if it is incorrect but is so firmly embedded that it does not
provoke this error-related activity. It is urgent that incorrect internalizations
be identified and fixed before they go bad. However, little is known about the
process or the size of the window of opportunity.

• What is the repetition rate of errors during a session if error feedback is
not received until the next session? How does internal error awareness
change with repetition? Sessions should involve 30–40 problems for this.

• Compare this with correctness feedback and error correction after each
problem.

The final question concerns durability. Durable knowledge requires practice
well beyond achieving accurate performance (cognitive psychologists use the
unfortunate term “overlearned” for this). It will be important to know how
much reenforcement is necessary to achieve durability with this particular task.
This might be addressed with followup studies, but getting reliable conclusions
will be difficult: long periods of disuse will lead to serious interference from
standard multiplication habits.
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2.3.3 Kinetic reenforcement of geometric structure

Qualitative geometric structure is used to explore questions about functions,
and to clarify the quantitative information needed for specific questions. For
example the curves y = ax2n for a positive and n a positive integer, all have
pretty much the same shape. We can see, for instance, that a straight line will
intersect any of them in either two points, one point (when they are tangent),
or no points.

We want to compare a purely visual approach with one that includes reen-
forcement. The comparison is done by cross-testing so the precise questions
addressed are: how well does kinetic learning transfer to visual testing, and
how well does visual learning transfer to kinetic testing. In fact actual use of
qualitative structure requires hand drawing, so the crucial question concerns
visual to kinetic transfer.

The role of neuroscience is to throw light on the mechanisms (or non-
mechanisms) of transfer between domains. To what extent does learning in one
mode recruit activity in regions that are used in testing the other mode? Does
recruitment, or lack thereof, explain success or failure of transfer? Answering
these questions requires imaging the learning activity, not just the testing.

2.3.3.1 The experiment

Subjects should be non-remedial first-year college students, as above. The study
design depends on the number of subjects that can be tested.

If the number is twenty or fewer then students should be pre-tested to assess
competence in the two learning modes, and assigned to the variant correspond-
ing their strength. In other words, students from largely-visual technology pro-
grams should be in the visual track, and students from traditional programs
should be in the kinetic track. There should be about the same number in each
track.

If the number is significantly greater than twenty then students should still
be pre-tested for reference purposes, but then assigned to tracks at random.
This would allow assessment of cross-training. Do visually trained students
adapt reasonably quickly to kinetic training, for instance?

Training sessions should last between 30 and 60 minutes, with at least three
short quizzes to reenforce learning and familiarize students with the quiz format.
It should be possible to repeat at least the first subsection if the corresponding
quiz outcome is unsatisfactory. Students should be imaged during the training
sessions. Students in both tracks should be able to do scratch work, and this
should be recorded. See below for sample materials.

Next, students should be imaged taking quizzes, in a one or two day window
at least three days after but within a week of the training session. The first
quiz would be in the mode in which they were trained, to assess retention by
comparison with the final quiz of the training session. The second quiz would
be in the other mode, to assess transfer of learning.

Genuinely qualitative internalization should include some abstraction and
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provide flexibility. The later quizzes should be slightly different from the lesson
materials to probe this.

2.3.3.2 Discussion

It seems likely that there will be significant differences in learning and transfer
between the two modes. Quantifying this would require much more careful
controls and larger numbers, but this experiment should suggest explanatory
neural mechanisms that could substantially sharpen design of followups. For
example:

• When kinetic students take visual tests, to what extent is the transfer
internal, or external? External transfer would use visual comparison with
a scratch sketch, while internal would presumably require communication
between kinetic and visual regions, probably mediated by activity in the
prefrontal cortex.

• When visual students take kinetic tests (i.e. are asked to draw something),
does the learning transfer, or does the output look like a reproduction
of a recalled visual image? (Sketches by students trained with graphing
calculators are frequently reproductions of a calculator display.) How does
neural activity reflect this?

If kinetic reenforcement is important for durable qualitative learning, then a
long-term goal is to find ways to incorporate kinetic reenforcement in technology-
based programs. This experiment should help make a start on this.

2.3.3.3 Materials

[[draft note: replace task with multiplication of functions]] The experiment re-
quires learning something unfamiliar but reasonably accessible. The proposal
is to explore how the shape of a monomial (y = xn) is modified by addition of
a lower-degree polynomial. This subliminally includes the qualitative similarity
of the families y = xn for n even, and for n odd.

• The visual version is illustrated (as usual) with graphics generated by
computer or calculator. Quizzes are visual multiple-choice.

• The kinetic version is illustrated by videos of hand drawing. Quizzes
require drawing.

The following illustrates visual lesson materials:
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odd - degree
monomial

sum

line, negative
coefficient

Figure 1: sum of y = xn, n odd, and a line with negative coefficient.

Roughly, adding a line with negative coefficient tilts the graph a bit to the right.
For very large values of x the two graphs are essentially the same.

The following illustrates a visual test item:

1

2

3

4

Figure 2: The solid line is the graph of a cubic monomial. Which of the
functions 1–4 is the sum of this and a quadratic with negative coefficient?

Which is the sum with a line with positive coefficient?

A corresponding kinetic test item would be: “sketch the graph of a cubic
monomial with positive coefficient. On the same graph, sketch the sum of this
and a quadratic monomial with negative coefficient.”
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Chapter 3

Mathematics Education
versus Cognitive
Neuroscience

November 2010

3.1 Background and outline

Cognitive neuroscience is concerned with the neural mechanisms underlying
human behaviour and cognition. The area has roots in medicine, psychology,
sociology, and philosophy, but it was largely advances in brain imaging that led
to development of a distinct discipline in the 1990s.

Mathematics education was an early theme in cognitive neuroscience. Ele-
mentary mathematical activity is more well-defined and consistently localized
than most cognitive activities, and in the late 1990s Stanislas Dehaene [14, 15]
exploited this in a pioneering exploration of innate number sense. Applications
to education seemed a natural and valuable next step. At the same time, how-
ever, Bruer [9] pointed out that education and neuroscience are concerned with
phenomena on vastly different scales, and trying to make a direct connection
would be a “bridge too far”. Instead, he recommended a two-stage approach
with neuroscience providing input to cognitive psychology, and psychology guid-
ing applications to education. This seemed sensible, and the idea prevailed for
almost a decade.

By 2005 there were calls for direct education-neuroscience interactions as
a “two-way street” [6], [24], and the term “educational neuroscience” (with
“cognitive” removed) began to be used. For later accounts see [37], [11]. The
reason offered was that Bruer’s two-stage approach was not working: educators
were using distorted popular accounts rather than solid science [4, 25, 21], and
psychologist seemed to be ineffective as intermediaries. The ‘two-way-street’
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approach is still the main theme. For instance, a major conference intended to
plot a course for neuroscience and mathematics education was held in 2009; see
the program [18] and position paper [17].

Unfortunately ‘brain-based’, ‘brain-friendly’, etc. educational methods are
multiplying, and still based on ‘neuro-myths’ [3]. Most neuroscience is incon-
clusive or irrelevant. Solid neuroscience findings that conflict with educational
dogma are being ignored. Nothing is working. The goal here is to analyze
individual articles and specific issues to try to understand why not. Is it just in-
eptitude, or is there a deeper incompatibility as the ‘versus’ in the title suggests?
And whatever the problem might be, is there a way around it?

3.1.1 Outline

Section 3.2 (The macro/micro spectrum) describes several levels of generality
and abstraction between brain and educational theory. These flesh out Bruer’s
scale mismatch observation, and have turned out to be a good way to organize
not only this inquiry but the whole volume of essays (see the Preface).

Section 3.3 (Ineffective cognitive psychology) explores reasons why Bruer’s
suggestion was unsuccessful. In brief, recommendations of an external agency
are too easily ignored or misinterpreted, and being external means it lacks con-
tact with important parts of the process.

Section 3.4 (Ineffective neuroscience) illustrates how neuroscience studies
are often rendered ineffective by doubtful educational assumptions and lack of
subject sophistication.

Section 3.5 (Dangerous neuroscience) illustrates how sophisticated neuro-
science can go dangerously astray when educational philosophy and goals are
accepted uncritically.

Section 3.7 (Mathematics and Learning) takes a different approach. The
sections so far describe problems and some of the missing expertise that might
have prevented them. This section illustrates how incorporating this expertise
could lead to high-impact outcomes, again through examples. but most of the
details are in other essays [?, ?]. The discussion touches on additional problems.

Section 3.8 (Appendex: Technical difficulty, and consequences) provides a
brief overview of the technical challenges of neuroscience. Everything is difficult,
outcomes are complex, and useful outcomes require insightful guidance on what
to look for. External collaborators with appropriate expertise will be hard to
find.

3.1.2 Note on style

In this article the passive third-person voice traditionally used in science is
reserved for scientific material. I use the first person for personal interpretation
or observation because I believe it is important to keep the distinction clear.
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3.2 The macro/micro spectrum

Education is concerned with phenomena on a vast range of scales, from brain
regions used by an individual student in a single activity, up through general
features of teaching, learning and behavior. Figure 1 provides a summary.

educational theory Commonalities of teaching, learning, and behav-
ior that transcend content.

subject matter Content, and its influence on teaching and learn-
ing.

course/curriculum Learning goals and methodologies at the course
and curriculum level.

cognition/activity Neural implementation of skills and understand-
ing, and strategies for developing these.

Figure 3.1: Educational levels from macro to micro

Neuroscience applies to the lowest level, while educational theory is con-
cerned primarily with the top. Bruer’s point in 1997 [9] was that the level gap
alone is likely to prevent effective direct interaction. There have been many
attempts since that time and Bruer was right about them being ineffective.
In analysis of examples I identify levels in Figure 1 where disconnects occur.
Putting these together in §?? suggests that Bruer was right about a level dis-
connect, but wrong about the nature and consequences of it.

3.3 Ineffective cognitive psychology

There are now quite a few qualitative conclusions from neuroscience and micro-
scale cognitive psychology that have profound implications for education. Later
we ask why educators have not picked up on these. The question here is: why
have cognitive psychologists been unsuccessful in bringing them to the attention
of educators? This was Bruer’s suggestion [9] for bridging the scale gap; why
didn’t it work?

3.3.1 Specific questions

Two specific findings about learning are used to probe this issue:

• Durable learning requires practice over an extended period of time, and
well beyond the point of accurate recall or performance.

• It is very difficult to correct errors in durable learning.

These are stated in behavioral terms because they are not hard to see in micro-
scale behavior, and in fact were more-or-less well known in cognitive psychology
well before the neuroscience era.
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Neuroscience revealed mechanisms behind these observations: learning is in
part implemented through physical changes in the brain. Interconnections are
strengthened, developed, or degraded, but these changes are temporary unless
extensively reenforced. And if durable learning is found to be erroneous then
correcting it requires dismantling a physical structure.

[[incomplete]]

3.4 Ineffective neuroscience

The need for—and current lack of—insightful and appropriate guidance is il-
lustrated by analysis of recent neuroscience studies. Section 3.4.1 describes
studies of multiplication; 3.4.2 concerns solving simple equations; ?? discusses
the understanding of errors; and 3.4.4 concerns word problems.

3.4.1 Multiplication

In this section we review two fMRI studies of integer multiplication, [31] [48].
These are relatively clear and are the sort of study one could imagine educators
trying to use in some way. However both omit subtle but crucial issues, partic-
ularly concerning errors, and one cannot imagine educators compensating for
this.

3.4.1.1 Krueger, Landgraf, et al.

The study reported in [31] finds activity in five main areas. Lacking “theories
which specify cognitive processes that are detailed enough to be examined by
neuroimaging” (quote from [17], above), they simply note which areas are active
in each of a sequence of time blocks, and from the coincidences infer correlated
activity.

The first concern is that the study uses three tasks identified as having
increasing difficulty: multiplication of two 1-digit integers; one 1-digit and one
2-digit integer; and two 2-digit integers. In fact these tasks have qualitatively
different cognitive and mathematical structures:

• multiplication of two 1-digit integers is simple fact recall and input-output.

• multiplication of a 1-digit and a 2-digit number requires two multiplication
facts, and short-term storage and addition of outcomes. The addition
requires shifting one output by one place, usually a single 1-digit addition,
and occasionally dealing with an overflow.

• multiplication of two 2-digit numbers engages the standard algorithm.
Here it is used to organize and combine two 1 × 2-digit products, each
generated as above.

Difficulty increases because successive tasks have qualitatively different sub-
tasks, not because they are more of the same. Moreover the algorithm used
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for the 2 × 2-digit multiplication is more representative of later mathematics
than is single-digit product memorization. An important question potentially
addressed by this study is: how does 2 × 2-digit multiplication differ from the
simpler cases?

More generally, there is an urgent need to understand how components of
mathematical algorithms interact cognitively. It seems likely that some could
be redesigned to reduce cognitive difficulty, and this could have profound edu-
cational consequences. Substantial exploration of the multiplication algorithm
would require products with three or more digits in each factor, but this would
be pointless without sophisticated mathematical input (see §2.1).

Another concern is that [31] was envisioned as a test of mental arithmetic,
so participants were unable to do the scratch work usually employed in multi-
plication. In particular in the 2 × 2 digit task, the output from the first 2 × 1
multiplication had to be held in internal working memory rather than written.
This may have introduced an artifact: instead of being written it may have been
held in internal memory associated with writing, and this may partially account
for the observed recruitment of the left precentral gyrus (subjects were right-
handed). Their interpretation of this as being connected with use of fingers in
counting is doubtful, and could be misused if wrong.

A general context for this concern is that most mathematical procedures use
written intermediate results as external working memory. External memory has
a tradeoff: it is more accurate and durable, but requires input-output processing
and shifts in attention focus. A key part of algorithm design is to optimize writ-
ten components for this use (and other things; see §??). Neuroscience studies
could certainly contribute to this, but the main point is that excluding scratch
work renders studies of all but the very simplest tasks useless.

A third concern is more neurological than mathematical. There seem to be
semi-autonomous facilities, for instance in the anterior cingulate cortex, that
check for conflicts and inconsistencies (see §??). This means that generating
an outcome, and recognizing whether or not a proposed outcome is correct,
can be substantially different neural activities. A lack of coordination between
these activities seems to underlie some learning difficulties [20]. However many
mathematical neuroscience experiments (including this one) tacitly assume that
correct alternatives are identified by generating an outcome and comparing. For
that matter, this assumption is used to justify wide use of multiple-choice tests
in mathematics education. This assumption is problematic and urgently needs
to be tested.

3.4.1.2 Rosenberg-Lee, Lovett, and Anderson

[48] describes an fMRI study of 3× 1- and 5× 1-digit multiplication, comparing
two different strategies to predictions of ACT-R computer models (see [2], [5],
and the Wikipedia entry). Differences from the study above:

• The models give predictions that enable detailed imaging (Granger anal-
ysis not needed), and the imaging essentially supports the model.
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• Subjects gave answers rather than identified them among choices.

• The use of a single-digit factor avoids the cognitive complexity of the full
multiplication algorithm, so this should have been described as a study
of a component of multiplication, not the full activity. This is a concern
about possible misinterpretation, not the science.

• The single-digit factor restriction, and comparison of two strategies, pro-
vides a clearer picture of this component of the algorithm.

The main shortcoming of [48] is that only correct responses were analyzed.
There is no information on how errors occur or how to avoid them, and the
design prevented error-checking, see §??.

3.4.2 Solving equations

Most studies of equation-solving have been neurological explorations without
significant educational goals. Lack of a coherent overall context for this activity1

makes large-scale goal formation difficult, but small-scale goals were available.
[5] and [52] seem primarily designed to show that ACT-R programs [2] can

effectively model the activities. This suggests that ACT-R is ready to be chal-
lenged by questions with important consequences, but that not much will hap-
pen without such challenges. In detail, [52] compares solving equations with
symbolic and numerical coefficients, and finds relatively little difference. This
supports the idea that a lot of arithmetic is more symbolic than numerical, but
the task was too simple to test this effectively. [5] compares solving numerical
equations to a symbol-manipulation task that is less relevant than one might
have liked. In both of these studies errors would probably have been more
revealing than correct work, but the studies were limited to correct solutions
because, so far, the models are.

A study of elementary calculus [32] showed activation patterns similar to
algebra. The routines used are essentially algebraic so mathematically these are
just more-complicated algebra problems, and apparently the brain sees them
the same way. They are significantly more complicated than the tasks used in
other trials, but more subject sophistication seems to be needed to draw useful
conclusions.

3.4.3 Errors

[[significance]] [45] studies errors in solving simple numerical equations. However
the conclusions are weak in a number of ways:

• Coefficient arithmetic has a significant error rate. How much of the ob-
served error was due to arithmetic, how much to the solving component,
and how much (if any) to interference between these tasks?

1Equation-solving should probably be seen as symbolic pattern recognition and manipula-
tion.
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• The task was mental (i.e. did not allow scratch work). See the next section
for an explanation why this is problematic.

• It would have been useful to know if there were patterns in the errors
that got noticed and triggered correction. However the protocol inhibited
corrections.

There have been many studies of conflict alerts and the patterns so far are
summarized in [13]. Most of these studies concern perceptual tasks irrelevant
to mathematics. They are useful guides

Internal conflict alerts originate in the region where the questionable cogni-
tion takes place. For instance the fMRI study [45] shows a correlation between
errors in solving simple numerical equations, and reduced preliminary activity
in a region in the prefrontal cortex associated with procedural fact retrieval.
Presumably insufficient activity increases the likelihood of some sort of loading
error. However their data also shows significantly increased activity during and
after an erroneous outcome, and ‘Error-Related Negativity’ (ERN) is seen at
this time in analogous EEG studies. Confusion or conflict due to the loading
error seems to cause formulation of a problem report and the ERN results from
dispatch of this report to the Dorsal Anterior Cingulate Cortex (DACC). The
DACC apparently determines what sort of conflict might result from the prob-
lem, identifies the relevant control region in the DorsoLateral PreFrontal Cortex
(DLPFC), and forwards an amplified report to that region for consideration. It
seems to be the DLPFC that actually issues the alert, determines the level of
awareness, and perhaps provides preliminary plans for response.

[22] focuses on internal conflict alerts. Consistently effective alerts, referred
to as “introspective awareness”, was found to correlate with gray matter vol-
ume in a region in the prefrontal cortex. Presumably this is the control region
relevant to the task in question. In any case it seems to be the bottleneck and
(as observed in [22]) effective error correction may require enough training that
neural plasticity leads to an increase in volume. A similar finding for mathe-
matical error correction would have profound educational significance because
error correction is largely absent from current curricula.

3.4.4 Word problems

Contemporary mathematical practice reflects this by splitting real-world appli-
cations into two parts: modeling (essentially a translation into symbolic form
suitable for mathematical analysis); and mathematical analysis of the model.

Conventional wisdom in elementary education rejects the separation of mod-
eling and analysis. As suggested in (4), word problems are thought of as a
different format rather than a different activity. Neuroscience investigations
that accept this, e.g. [19], [51], are ineffective. They misinterpret neural evi-
dence that these really are different activities, and find behavioral equivalence
because they followed the educational practice of restricting to problems with
trivial mathematical core. A critical comparison with more complex problems
should give a very different picture; see §2.2.2 for a proposal.
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[35] provides an extreme example. This study compares two strategies for
young children working extremely simple word problems that require a size
comparison. One uses a symbolic translation to connect to innate number sense,
the other uses pictures to enable visual comparison. The strategies do not apply
to other problem types, and the use of innate abilities is a dead end.

3.4.5 Summary

Neuroscience experiments genuinely effective for education will require appropri-
ate educational and psychological expertise and, crucially, cognitively-informed
mathematical sophistication. Lack of these has prevented cognitive neuroscience
from having much impact.

3.5 Dangerous neuroscience

Incautious interpretation of neuroscience findings can be counterproductive, not
just ineffective. This is illustrated with material from a 2008 profile of Stanislas
Dehaene, by Jim Holt in the New Yorker magazine [29].

First, a general principle:

“The fundamental problem with learning mathematics is that
while the number sense may be genetic, exact calculation requires
cultural tools—symbols and algorithms—that [. . . ] must be ab-
sorbed by areas of the brain that evolved for other purposes. The
process is made easier when what we are learning harmonizes with
built-in circuitry. If we can’t change the architecture of our brains,
we can at least adapt our teaching methods to the constraints it
imposes.”

This is certainly true as stated, but most educators would interpret it as “adapt
our teaching goals to the constraints imposed by brain architecture”. They
would want to build on innate number senses and connection to spacial sense,
as mapped out by Dehaene and others, and avoid some of the obviously unnat-
ural material now taught. These inclinations are shared by some “mathematics
educational neuroscientists” [12].

A content-aware interpretation would be: understand skills needed in the
long term; find out how they are implemented in brains of successful users;
and design teaching methods to develop this implementation as quickly and
painlessly as possible.

The educational and content-aware interpretations differ: there are unnatu-
ral things that really are needed for long-term success. Returning to [29]:

Our inbuilt ineptness when it comes to more complex mathemat-
ical processes has led Dehaene to question why we insist on drilling
procedures like long division into our children at all. There is, after
all, an alternative: the electronic calculator. ‘Give a calculator to
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a five-year-old, and you will teach him how to make friends with
numbers instead of despising them,’ he has written. By removing
the need to spend hundreds of hours memorizing boring procedures,
he says, calculators can free children to concentrate on the meaning
of these procedures . . .

Boring memorization is indeed a problem, and this solution is already widely
used in the US.

In the long term, however, this is the wrong solution. The reasons are
described next, and some are expanded in the experimental section.

First, calculators make numbers friendly in a very superficial way: they all
seem the same and have no valuable structure. A basic feature of the place-
value notation, for instance, is that multiplication or division by ten can be
accomplished by moving the decimal point. Hand-arithmetic students know
this because it is a big time-saver when it can be used, and it is an integral
part of multi-digit multiplication and division algorithms. Calculator students
do not, because it is useless: on a calculator moving the decimal point would be
accomplished by multiplying or dividing by ten. Similarly when a calculation
calls for both multiplying and dividing by the same number, hand-arithmetic
students will cancel them to avoid both operations. Calculator students almost
never do this, partly because they do not have written intermediates that they
could scan for opportunities, and partly because it has so little payoff that such
scanning is not worthwhile. The result is that calculator students frequently
have much weaker number sense.

The second problem is more subtle. For long-term purposes, internalizing
the algebraic structure of numbers in a way that extends to symbols is more
important than fast or perfect numerical multiplication. In the past, much of
this internalization seems to have been a subliminal consequence of the fact
that much of the manipulation in the boring and unnatural algorithms is es-
sentially symbolic, see §2.3. Symbols may even seem friendlier than numbers
because one doesn’t have to recall numerical multiplication facts. Calculator
students never see these quasi-symbolic manipulations, and so do not get this
subliminal exposure. Further, encoding operations as keystrokes seems to make
them inaccessible to abstraction, and because symbols cannot be manipulated
the same way, symbols seem completely different from numbers. The result is
that calculator students frequently have weaker symbolic skills.

The educational reasoning is:

1. Mathematics is an abstraction of systematic structure in the physical
world;

2. We have a great deal of intuitive understanding of the physical world,
either innate or learned;

3. Therefore, our intuitive understanding can and should serve as a basis for
developing mathematical knowledge and skills;
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However this seems to be wrong in many ways. We return to the philosophi-
cal assertion (1) later. (2) is true: it is now well-known to cognitive psychologists
that we do have an innate version of physics, but it is non-Newtonian and must
be overcome to learn the real thing [20], [7]. In other words (3) is wrong for
physics. It should not be a big surprise that it is wrong for mathematics too.

We do have some innate number sense but, as discussed above, it is quite
insufficient for mathematics and again must be avoided or overcome. We have
some sense of space and geometry, and in antiquity it was found that with a
little prodding this could be used to do Euclidean plane geometry. This is still
about all we can do with it two thousand years later, and it is not a good
foundation for the real thing. In short, conclusion (3) is wrong. Once scientific
or mathematical understandings are established, then intuitive ideas can be
retrained and recruited to enrich this understanding, but trying to do this too
soon inhibits rather than advances reliable learning. Belief (3) was abandoned
in professional practice about a century ago, see §3.7.2 and [5].

Whether mathematics is “really” an abstraction of the physical world, as in
(1) above, is a pointless philosophical debate. Cognitively this actually seems
to be backwards: It seems to be more effective to think of the physical world as,
roughly speaking, a murky implementation of a fragment of mathematics.

3.5.0.1 Summary

Dehaene offers “broad brush messages” of the sort Goswami [25] observes are
needed by educators. They lack the nuance and precision of the original science,
but surely Dehaene should be qualified to formulate broad-brush messages that
are true to the science. They are also quite compatible with dominant conven-
tional wisdom in education, so they are instances of “successful” collaboration
between neuroscience and education. They are nonetheless counterproductive
in the long term because they are insensitive to the needs of mathematics.

It is puzzling that Dehaene supported a version of mathematics on the basis
that it is easy to learn, without considering whether it is effective. He surely
knows that our cognitive structures are more attuned to Aristotelian physics
than Newtonian, but it is doubtful that he would promote the former on that
basis. For that matter, the old philosophical approach to cognition is much
easier than the science he does, but he would not accept this as a justification.
There seems to be something about mathematics that invites confusion.

It is important, however, to recognize that the difficulties Dehaene identifies
are real. The easy, neuroscience-endorsed calculator alternative may be coun-
terproductive, but memorization is still boring and the antique approach still
leaves a lot to be desired. Is there a way to use calculators that does not un-
dercut subliminal learning of algebraic structure? Is there a way to internalize
multiplication facts without explicit memorization?
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3.6 Ineffective education

[ disconnected, due to incomplete editorial reorganization ]

3.6.1 Lack of scientific skills

The core problem is that education is not a science. This is not for lack of
trying: systematic efforts to develop ‘education science’ go back more than a
century, and progress of a sort has been made. Research went from a top-down
view dominated by social theory and forceful personalities, thorough behavioral
models of children essentially as small animals, and later tried to come to grips
with the complexity of actual classroom practice and human learning. See [33]
for a detailed recounting of the general story and [30] for mathematics in the
US. Unfortunately the obstacles are immense and the complexity overwhelming:

• Children are surely the most complicated and difficult experimental sub-
jects possible;

• There are strong constraints on how the subjects can be controlled or ma-
nipulated, and on how much control investigators have over actual prac-
tice;

• There are many important variables that cannot be measured, let alone
controlled;

• The situation is so complex and the theories so vague that scientific pre-
cision in terminology is impossible; and

• theories and ‘facts’ are not precise or strong enough to support logical
analysis or deductive reasoning.

Recent education research in the US has attempted to be more scientific by
use of large-scale trials, statistical analysis, etc. more-or-less modeled on med-
ical studies. The resemblance is rather superficial, however, and many of the
practices would be considered unethical in medicine. For instance:

• The double-blind protocol found to be necessary for reliable medical con-
clusions is impossible in education. But rather than accept the medical
conclusion that findings will be biased and unreliable, educators conclude
that it somehow doesn’t matter.

• Small studies often have sample sizes two orders of magnitude too small
to justify the statistical analysis.

• Large-scale trials often have little more than the name in common with
the pilot studies, but outcomes are still interpreted as validations of the
pilot design.

• Significant variables such as per-student cost and teacher expertise are
known but not reported, and others such as student disruption are some-
times controlled without mention.
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• Complexity is controlled by severely restricting—in advance—possible in-
terpretations of the data.

One can sympathize with the difficulty and admire the effort, but the conse-
quence is still that educational researchers do not develop scientific sensibilities
or discipline.

Educational research outside the US tends to be more qualitative and thought-
ful, but not more scientific. Influences include dubious and conflicting psycho-
logical theories, simplified abstract models of “the student”, and deeply-held
convictions derived from classroom practice, particularly at elementary levels.
A complicating factor is that humans have powerful instinctive responses to
children. Some educational theory seems as much informed by the emotional
response of teachers as by dispassionate facts about children. In any case the
effort is still not data-driven or logic-constrained, and educators do not develop
the facilities to deal with data-driven and logic-constrained scientific material.

Some of the more explicitly philosophical approaches to education verge on
the hilarious: see [42] for use of Wittgenstein to defend education against a
caricature of neuroscience.

There is an extensive literature on educational abuse of cognitive neuro-
science. In 2006 Goswami [25] observed the inability to make use of complex
or nuanced information, but expressed hope that broad-brush or big-picture
messages might lead to better outcomes. The 2010 article of Alferinka and
Farmer-Dougana [3] describes more extensive misuse, with less optimism. So far
neuroscience does not have broad-brush or big-picture formulations that avoid
the need for scientific precision (more about this below). Again, this means the
mainstream educational community cannot be expected to use it carefully or
correctly.

3.7 Mathematics and learning

The author feels, particularly after developing the examples in later sections,
that a cognitively-oriented understanding of learning difficulties of real students
is the primary qualification needed for a genuinely productive neuroscience col-
laboration. It would also be useful to understand modern cognitive strategies
that enable humans to do mathematics. These are explained in this section.

3.7.1 Teaching vs. diagnosis

The mainstream educational community, and teachers at all levels, are more
focused on teaching than learning, or in other words more on information deliv-
ery than diagnosis of problems with receiving the information. There is a good
reason for this: teaching is essentially concerned with learning in groups, and
resource constraints forbid much individualized attention2.

2See [44](c) for further discussion.
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By diagnosis we mean one-on-one sessions, usually initiated by the student,
and intended to isolate and fix a specific difficulty. The goal is to provide a
brief, targeted intervention that will enable the student to resume working on
his own. To accomplish this the helper should listen more than talk, and not
jump to conclusions about the difficulty. Expert teachers find both of these
difficult. Diagnostic work provides a complex, fine-grained and individual view
of learning. This view is rather different from the teacher’s perspective and from
standard educational theory, and seems considerably more relevant to cognitive
issues and neuroscience.

Diagnosis in this sense is (in a nutshell) the procedure used by the help
staff in the Math Emporium at Virginia Tech, a facility providing computer-
based and computer-tested mathematics courses to around 10,000 students per
semester, and now in its thirteenth year; see http://www.emporium.vt.edu. The
author has spent over 1,000 hours in diagnostic work with students in the Math
Emporium, and found it far more revealing than thirty years of classroom teach-
ing. This is the primary experience drawn upon in developing the proposals later
in the article.

3.7.2 Modern mathematics

Professional practice changed profoundly in the early twentieth century. It
became better adapted to mathematics and consequently more powerful, but
other aspects of the change are more important here.

Modern mathematical methods are more systematic, deliberate, and precise,
and less dependent on intuition and heuristics. A curious consequence is that
strategies for human use have developed: systematic methods admit strategies;
intuition either works or it doesn’t.

It is significant that mathematical human-use strategies evolved without con-
scious direction or understanding. Up through the nineteenth century mathe-
matics was quite influenced by philosophy, but the early twentieth-century tran-
sition included a break with philosophy. Because the strategies evolved without
interference they could adapt, in ways we do not understand, to human abilities
and limitations that we also do not understand. Cognitively-oriented study of
these strategies can therefore reveal quite a bit about human cognition [5].

At present these cognitive strategies are used by only a few tens of thousands
of professionals, but since they address general cognitive issues they should, in
principle, be a rich resource for new educational practices. They certainly could
be a rich resource for educational neuroscience. The discussion in §3.4.1, ??
and examples later in this article should illustrate this point. However explicit
understanding of these strategies is extremely rare, and in the end less vital
than the diagnostic understanding of learning problems discussed above.

3.7.3 Educational hostility

Mathematics education remains modeled on obsolete practices of the nineteenth
century and before; see [5] for a detailed discussion. This is no doubt one reason

http://www.emporium.vt.edu
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it has had trouble improving on nineteenth-century outcomes. It is also part of
the reason so few students make the transition from school mathematics to the
twentieth century.

Attempts to introduce a bit of modern mathematics into education, for in-
stance ‘new math’ in the US, have been failures. The big problems were not
mathematical: the large-scale dissemination of ‘new math’ was so poorly de-
signed and executed it might have failed even if the goal had been to give away
candy. However the education community saw the failure as proof that modern
mathematics is suitable only for freaks. Mainstream educators remain deeply
hostile to modern methodologies. The hostility includes human-use strategies:
one of the most powerfully effective is the concise self-contained definition, but
this is universally rejected by educators.

A consequence of this hostility is that mathematicians who become involved
in pre-college education are required to “check their weapons at the door”: buy
into the idea that nineteenth-century methods are somehow kinder, gentler,
and more appropriate. This is easier than one might think, because the features
that make modern mathematics powerful are internalized, not articulated. In
any case the result is that mathematicians involved in mainstream education
have some of the same drawbacks as educators, regardless of their mathematical
credentials. See [8], [56] for examples.

3.7.4 Theoretical incoherence

Theories of mathematics and mathematical practice are as incoherent and in-
consistent as educational theories. One reason is that the philosophers and his-
torians who might develop explicit theories are still concerned with pre-modern
practice, and their incoherence reflects incoherence in actual practice that made
change necessary. Ironically, modern practice is inaccessible to philosophical
investigation because it is more effective: it enabled a rapid increase in technical
difficulty that made it opaque to outsiders.

Mathematicians writing about mathematics are as incoherent as philoso-
phers. They have internalized the methodology so well that it has become
transparent, and it seems to be a general principle that people cannot figure
out how they do things that they do well. Somewhat like birds and flying.

The point for the present discussion is that current descriptions of mathe-
matics, no matter what the source, are not good resources for neuroscience3.

3.7.5 Summary

It seems that the qualification most important for neuroscience collaboration
is a diagnostically-based and mathematically sophisticated understanding of
cognitive learning problems of real students. This is rare. An understanding
of human-use strategies of modern mathematics could also be valuable, but is
even more rare.

3The author hopes [5] will be an exception.
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The main point is that the relevant expertise will not be found in educators,
in mathematicians involved in mainstream pre-college education, in the philos-
ophy or history of mathematics, nor even in the writings of mathematicians
themselves. A consequence seems to be that ideas must be evaluated directly
on their own merits, rather than on the credentials of the proposers.

3.8 Appendex: Technical difficulty, and conse-
quences

The section begins with a brief review of the technical difficulties of brain imag-
ing. We see that these difficulties impose strong constraints on how the work
is conducted and on the feedback needed to make progress. It also makes good
use of the outcomes a challenge.

3.8.1 Technical difficulties

The first problem is that the brain is encased in the densest bone in the body.
In principle, sensors could be implanted inside the skull, but this is invasive,
expensive, and current sensors are unsuitable for all but the most urgent hu-
man applications. Education-oriented imaging must be done from outside. As
a result all techniques must deal with signal attenuation and distortion by the
skull, and the inversion problem (reconstruction of internal activity from ex-
ternal data) requires difficult blends of mathematics, physics, and anatomical
knowledge. No method has completely satisfactory inversion: see [57] for an
illustration of how better anatomical knowledge could improve interpretation of
fMRI data, for example. Inversion methods for MEG are particularly primitive.

Next, brains are busy places, and signals relevant to the question at hand
must be extracted from the general hustle and bustle. The faintness of individual
signals is suggested by the fact that all this busy activity uses, on average, less
than 20 watts of power. A dim bulb, so to speak.

A great deal remains inaccessible. None of these methods give information
about neurotransmitter activity, for instance. Neurotransmitters are profoundly
important and individual differences effect both cognition and imaging, but
there is currently no way to anticipate or compensate for such effects and they
must be treated as noise. This, no doubt, is one reason statistical aggregation
is necessary for useful outcomes.

Different methods have their own specific difficulties:

• Positron emission tomography (PET) gives good images but requires in-
gestion of radioactive substances. Total exposure is low compared to X-ray
tomography, but the radiation is higher-energy and the target is an organ
that we don’t want to damage. It is also expensive.

• The usual explanation of PET is that it tracks glucose uptake associated
with increased neural activity. This is not literally true and exactly what
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it does track, and whether it really correlates with glucose delivery, is a
matter of debate. For practical purposes it may be more important to
understand how it correlates with other imaging data.

• Functional magnetic resonance imaging (fMRI) requires high magnetic
fields. The machines are large, noisy, and expensive to operate. The data
should be similar to PET data, and nicely complementary to EEG or
MEG. Unfortunately the high field strength makes it difficult or impossible
to use these methods at the same time, so data from a single trial usually
cannot be correlated. There has been some progress with simultaneous
EEG and high-field fMRI [28]. Low-field fMRI that might address some
of these problems is in development [10], but has a long way to go.

• fMRI primarily images the so-called Blood Oxygen Level Dependent (BOLD)
response. The presumption is that deoxygenated hemoglobin indicates
energy consumption, therefore neural activity, and therefore cognitive use
of the area. However most activity is anaerobic and aerobic processes
recharge local energy stores rather than directly power the activity. One
consequence is that the BOLD response is rather sluggish and the link to
activity is indirect. Further, direct comparison with implanted electrodes
in monkey brains [49] indicates that this signal can be triggered by antic-
ipated use as well as the physiological stress that follows use. This means
standard assumptions about the link are not completely reliable.

• Diffusion Spectrum Imaging (DSI) is a variation on MRI that detects the
Brownian movement of water molecules [26, 27]. DIS can be used to
image fiber structure and connectivity in white matter because water is
constrained to move within fibers. This is very powerful information but
the technical requirements are high: very high fields, high gradients, long
acquisition times, and complex mathematical analysis. There are less-
demanding and less-informative variants (diffusion tensor imaging, etc.,
[26]).

• Near infrared spectroscopy (NIRS) exploits the fact that tissues contain-
ing relatively little blood—in particular the skull—are translucent in the
near infrared (650–950 nm). This window includes absorption lines for
oxygenated and deoxygenated hemoglobin, and these can be used to de-
tect energy-intensive activity in the outermost few mm of the brain [39],
[1]. The thick diffusive layer (skull) and multitude of artifacts (cardiovas-
cular and respiratory activity, head movement, scalp effects, etc.) limit
imaging to very coarse resolution. On the other hand the equipment is
modest and unobtrusive compared to other methods, so NIRS is attractive
for large-scale studies or individual assessment when high-resolution pilot
studies have shown what to look for [19].

• Magnetoencephalagraphy (MEG) uses magnetic fields resulting from cur-
rent loops in the brain. These fields are weak and detection requires elab-
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orate shielding and liquid-helium-cooled sensors a few millimeters from
the scalp.

• Inversion techniques for MEG are still primitive, and it is a stretch to call
the output “images”. Fields detectible outside the skull must be generated
by relatively large currents, but the anatomical structures that support
these currents are not fully understood and cannot be inferred from the
field data. DSI, which does image these structures, might eventually give
a ‘wiring diagram’ that would enable better inversion.

• There is a lot of individual variation not related to the questions at hand.
People with tinnitus, for example, have significantly different MEG profiles
[53]. Again, at present these differences are treated as noise and degrade
the signal.

• Electroencephalagraphy (EEG) makes use of electric fields. These are
easier to detect than magnetic fields but the data is more complex: the
fields are distorted by the skull and scalp; fluctuating reference levels; and
artifacts from pulse and cardiovascular electrical activity. Eye-blinks also
cause strong artifacts because there is a significant potential difference
between the front and back of the eye. As with MEG, genuine images
cannot yet be extracted.

• Both MEG and EEG have response fast enough to enable real-time track-
ing of neural activity, while the slower image rate of PET and fMIR give
time-averaged results. Fast response offers opportunities but also addi-
tional challenges. Making sense of data that involves vision, for instance,
requires tracking and compensating for eye movement. Eyes move a lot,
and the brain pre-processes optic nerve signals to produce stable percep-
tions. This compensates for limitations of light receptors and gives better
visual perception, but the pre-processing produces complex and mostly
irrelevant signals.

• Tracking eye movement can give information on attention focus, and pupil
dilation sometimes correlates with cognitive resource allocation [34].

3.8.2 Needs of neuroscience

Neuroscience studies are expensive, with costs orders of magnitude higher than
traditional educational studies of comparable scope. To attract funding, and to
avoid wasting it, education-oriented experiments must be designed so there is
a good chance there will be a signal above the noise level, and that this signal
will be meaningful. Moreover the technical difficulties mean that experimental
design must be quite insightful and targeted to have a good chance of success.

As De Smedt et.al. [17] put it (p. 102):

“few attempts have been made to study more complex and higher
order mathematical skills. . . . A particular challenge of this research
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is that it requires educational and psychological theories, which spec-
ify cognitive processes that are detailed enough to be examined by
neuroimaging.”

More precisely, insights into cognitive processes are needed from somewhere.
Recall that these are mathematical processes, so it seems likely that mathemat-
ical sophistication will play a key role. It is now very doubtful that educational
theories will be helpful in any way. Psychological theories are either off-base, or
too tentative and unfocused to be much help.

3.9 Fragments

Contemporary educational theory, by contrast, follows the more top-down model
of classical philosophy. The theory is “informed” by low-level experience, but
also by social and political convictions, current psychological theories, etc., so
the connection is tenuous.

In these terms Bruer’s question is: how can new micro-scale information be
incorporated in a top-down system? His suggestion was to rely on an external
agency (cognitive psychology) that does have a bottom-up structure. It appears
that this won’t work. External recommendations are easily ignored, particularly
if the conclusions are unwelcome (§3.3), and lack of contact with intermediate
levels in education means important issues will be neglected. In particular,
anything specific to the subject matter will be overlooked.

3.9.1 Unmet needs

As explained in §3.8, productive neuroscience research requires targeted and
insightful guidance about what to look for, and what it means. Bruer hoped
that cognitive psychologists could extract specific questions from the educational
maelstrom, but psychologists did not rise to this challenge. There have been
efforts to translate neuroscience findings into education, and to debunk misuses,
but essentially no feedback to the neuroscience community.
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Alonso, T. O. Spatiotemporal brain dynamics during preparatory set shift-
ing: MEG evidence NeuroImage 21 (2004) pp. 687–695.

[41] Pashler, Harold, The Psychology of Attention, MIT Press 1998.

[42] Purdy, Noel; Morrison, Hugh, Cognitive neuroscience and education: un-
ravelling the confusion, Oxford Review of Education 35 (2009) pp. 99–109.

[43] Quinn, Frank The Nature of Contemporary Mathematics, current draft
available at http://www.math.vt.edu/people/quinn/history nature

[44] Essays on Mathematics Education, preprint at
http://www.math.vt.edu/people/quinn

a Contemporary proofs for mathematics education, to appear in the pro-
ceedings of ICMI Study 19.

b Student computing in mathematics: interface design

c Teaching vs. learning in mathematics education

d K-12 Calculator woes, Notices of the Amer. Math. Soc. May 2009, p.
559.

[45] Ravizza, S. M.; Anderson, J. R.; Carter, C. S. Errors of mathematical
processing: The relationship of accuracy to neural regions associated with
retrieval or representation of the problem state Brain Research, 1238 (2008)
pp. 118–126.

[46] Richert, R.; Robb, M.; Fender, J.; Wartella, E. Word Learning From Baby
Videos, Archives of Pediatric and Adolescent Medicine 164 (2010) p. 432.

[47] Roseberry S; Hirsh-Pasek K; Parish-Morris J; Golinkoff RM; Live action:
can young children learn verbs from video? Child Dev. 80 ( 2009) pp.
1360-1375.

[48] Rosenberg-Lee, M., Lovett, M., Anderson, J. R. Neural correlates of arith-
metic calculation strategies Cognitive, Affective, and Behavioral Neuro-
science, 9 (2009) pp. 270–285.

http://www.math.vt.edu/people/quinn/history_nature
http://www.math.vt.edu/people/quinn


BIBLIOGRAPHY 79

[49] Sirotin, Yevgeniy; Das, Aniruddha Anticipatory haemodynamic signals in
sensory cortex not predicted by local neuronal activity, Nature 457 (22 Jan-
uary 2009) 475-479.

[50] Sohn, Myeong-Ho; Ursu, Stefan; Anderson, John R.; V. Stenger, Andrew;
Carter, Cameron S. The role of prefrontal cortex and posterior parietal
cortex in task switching, Proc. Nat. Acad. Sci. 97 (2000) pp. 13448–13453.

[51] Sohn, M. H.; Goode, A.; Koedinger, K. R.; Stenger, V. A.; Fissell, K.;
Carter, C. S.; Anderson, J. R; Behavioral equivalence, but not neural
equivalence–Neural evidence of alternative strategies in mathematical think-
ing, Nature Neuroscience 7 (2004) 1193–1194.

[52] Stocco, A.; Anderson, J. R. Endogenous Control and Task Representation:
An fMRI Study in Algebraic Problem Solving Journal of Cognitive Neuro-
science 20 (2008) pp. 1300–1314.

[53] Weisz, Nathan; Moratti, Stephan; Meinzer, Marcus; Dohrmann, Katalin;
Elbert, Thomas; Tinnitus Perception and Distress Is Related to Abnormal
Spontaneous Brain Activity as Measured by Magnetoencephalography PLoS
Medicine (www.plosmedicine.org) 2 (June 2005) 546–553.

[54] Willingham, Daniel, Collected articles at
http://www.danielwillingham.com/articles.html

a Ask the Cognitive Scientist: Is it true that some people just can’t do
math? American Educator, Winter 2009-2010, pp. 14–39.

b Ask the Cognitive Scientist: “Brain-Based” Learning: More Fiction
Than Fact, American Educator, Fall 2006.

c Ask the Cognitive Scientist: Have Technology and Multitasking Rewired
How Children Learn?, American Educator, Summer 2010.

[55] Willingham, Daniel; Lloyd, John; How Educational Theories Can Use Neu-
roscientific Data Brain Localization and Education, 1 (2007) pp. 140–149.
Retrieve from [54] above.

[56] Wu, Hung-Hsi, What’s Sophisticated about Elementary Mathematics?
American Educator, Fall 2009, pp. 4–14.

[57] Wu, S. S.; Chang, T. T.; Majid, A.; Caspers, S.; Eickhoff, S. B.; and Menon,
V. Functional Heterogeneity of Inferior Parietal Cortex during Mathemat-
ical Cognition Assessed with Cytoarchitectonic Probability Maps Cerebral
Cortex 19 (2009) pp. 2930–2945.

file:www.plosmedicine.org
http://www.danielwillingham.com/articles.html


80 BIBLIOGRAPHY



Chapter 4

Contemporary Proofs for
Mathematics Education

January 2010

Introduction

It is widely known that mathematics education is out of step with contemporary
professional practice: Professional practice changed profoundly between about
1890 and 1930, while mathematics education remains modeled on the method-
ologies of the nineteenth century and before. See [5] for a detailed account.

Professional effectiveness of the new methodology is demonstrated by dra-
matic growth, in both depth and scope, of mathematical knowledge in the last
century. Mathematics education has seen no such improvement. Is this related
to continued use of obsolete methodology? Might education see improvements
analogous to those in the profession, by appropriate use of contemporary meth-
ods?

The problematic word in the last question is “appropriate”: Adapting con-
temporary methods for educational use requires understanding them in a way
that relates sensibly to education, and until recently such understanding has
been lacking. The thesis here is that the description of contemporary proof in
[5] could be useful at any educational level. Use of contemporary definitions
is similarly illustrated in Contemporary Definitions for Mathematics Education,
in [8].

According to [5], contemporary proofs are first and foremost an enabling
technology. Mathematical analysis can, in principle, give the right answer every
time, but in practice people make errors. The proof process provides a way to
minimize errors and locate and fix remaining ones, and thereby come closer to
achieving the abstractly-possible reliability.

This view of proof is much more inclusive than traditional ones. “Show
work”, for instance, is essentially the same as “give a proof”, while the anno-
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tations often associated with proofs appear here in “formal proofs” (Section
4.1.2), as aids rather than essential parts of the structure. To emphasize the
underlying commonalities, the word “proof” is used systematically in this essay,
but synonyms such as “show work” are appropriate for use with students.

The first section carefully describes proof and its components, but the essence
is: “A transcript of work with enough detail that it can be checked for errors.”
The second section gives examples of notations and templates designed to let
students easily generate effective work transcripts. Good template design de-
pends, however, on deep understanding of student errors. The third section
illustrates how carefully designed methods can remain effective for “long prob-
lems” well outside the scope of usual classroom work. The final section describes
the conflict between contemporary methodology and the way real-world (word)
problems are commonly used. Changes and alternatives are suggested.

4.1 Proofs, Potential Proofs, and Formal Proofs

Too much emphasis on the correctness of proofs tends to obscure the features
that help achieve correctness. Consequently, I suggest that the key idea is
actually “potential proof”, which does not require correctness. Variations are
described in Sections 4.1.1–4.1.2, and the role of correctness is described in
Section 4.1.3. Some educational consequences are discussed in Section 4.1.4,
The Role of Diagnosis; others occur later in the essay.

4.1.1 Potential Proof

A potential proof is a record of reasoning that uses reliable mathematical meth-
ods and is presented in enough detail to be checked for errors.

Potential proofs are defined in terms of what they do rather than what they
are, and consequently are context-dependent. At lower educational levels, for
instance, more detail is needed. Further, the objective is to enable individual
users to get better results, so even in a single class different students may need
different versions. Commonalities and functionality are illustrated here, but
individual needs must be borne in mind.

4.1.1.1 Example, Integer Multiplication I

Multiply 24 and 47 using single-digit products.

Solution:
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2 4
4 7
1 1

1 4
1 6
8

1 1 1 1

This is essentially the traditional format, and is designed to efficiently sup-
port the algorithm rather than display mathematical structure; see Section
4.1.2.1 for an alternative. It is also not annotated, so it is not a formal proof in
the sense of Section 4.1.2. Nonetheless, it provides a clear record of the student’s
work that can be checked for errors, so it is a potential proof that the product
is 1111.

4.1.1.2 About the Example

The example is not a proof because it contains an error. However:

• The error is localized and easily found. Ideally, the student would find
and fix it during routine checking

• The error is not random, and a possible problem can be diagnosed: 11 in
the third line is the sum of 4 and 7, not the product.

• The diagnosis can be used for targeted intervention. If the error is rare
the student can be alerted to watch for it in the future. If it resulted from
a conceptual confusion then teachers can work with the student to correct
it.

4.1.1.3 About the Idea

In the last decade I have spent hundreds of hours helping students with computer-
based practice tests. In the great majority of cases they more-or-less understand
how to approach the problem and have a record of the work they did, but some-
thing went wrong and they can’t find the error. The goal is to diagnose the
error, correct it, and perhaps look for changes in work habits that would avoid
similar errors in the future.

Sometimes the student’s work is easy to diagnose: Intermediate steps are
clearly and accurately recorded; the reasoning used in going from one to the
next can be inferred without too much trouble; the methods used are known
to be reliable; etc. In other words it is what is described here as a potential
proof. In these cases the mistakes are often minor, and the student often catches
them when rechecking. Sometimes I can suggest a change in procedure that will
reduce the likelihood of similar mistakes in the future (see Section 4.2 on Proof
Templates). The occasional conceptual confusions are well-localized and can
usually be quickly set right.
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In most cases my students’ work does not constitute a potential proof. Prob-
lems include:

• Intermediate expressions are incomplete or unclear. For instance when
simplifying a fragment of a long expression it is not necessary to copy the
parts that do not change, but without some indication of what is going on
it is hard to follow such steps and there are frequently errors in reassembly.

• Steps are out of order or the order is not indicated, for instance by num-
bering.

• Too many steps are skipped.

• The student is working “intuitively” by analogy with an example that
does not apply.

• Notations used to formulate a problem (especially word problems) are not
clear.

All these problems increase the error rate and make finding errors difficult for
either the student or a helper. If not corrected they limit what the student can
accomplish.

The point here is that “potential proof” is to some extent an abstraction of
the work habits of successful students. The same factors apply to the work of
professional mathematicians, though their role is obscured by technical difficulty
and the fact that checking typically proceeds rapidly and almost automatically
once a genuine potential proof is in hand.

4.1.2 Formal Potential Proof

A formal potential proof includes explicit explanation or justification of some
of the steps.

The use of justifications is sometimes taken as part of the definition of proof.
Here it appears as useful aid rather than a qualitatively different thing: The
objective is still to make it possible to find errors, and formality helps with
complicated problems and sneaky errors.

The best opportunities for formal proofs in school mathematics are in in-
troducing and solidifying methods that in standard use will not need formality.
This process should improve elementary work as well as make the formal-proof
method familiar and easily useable when it is really needed. The next example
illustrates this.

4.1.2.1 Example, Integer Multipication II

Multiply 24 and 47 using single–digit products.

Solution:
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Explanation Result
write as polynomials in (2× 101 + 4× 100)(4× 101 + 7× 100)

powers of 10
set up blank form for output 102( ) + 101( ) + 100( )

enter products in the form, 102(2× 4 ) + 101(2× 7 + 4× 4) + 100(4× 7 )
without processing

compute coefficients 102(8 ) + 101(30 ) + 100(28 )

recombine as a single integer 800 + 300 + 28 = 1128

4.1.2.2 Comments

This example uses a “structured” format for proof, see [4], [5]. I have not had
enough experience to judge the benefits of a standardized structure.

The procedure follows the “template” for multiplication of polynomials de-
scribed in Section 4.2.1. (See Section 4.3.1 for a version used to multiply large
numbers.)

Writing in expanded form with explanations clarifies the procedure. Once
the procedure is mastered a short-form version can be used:

102(2× 4︸ ︷︷ ︸
8

) + 101(2× 7︸ ︷︷ ︸
14

+ 4× 4︸ ︷︷ ︸
16︸ ︷︷ ︸

30

) + 100(4× 7︸ ︷︷ ︸
28

)

800 + 300 + 28 = 1128

In this form:

• The numbers are not rewritten explicitly as polynomials because the co-
efficients can be read directly from the decimal form. Some students may
have to number the digits to do this reliably.

• The extra space in the outer parentheses after the powers of ten indicates
that the blank template was set up first.

• The products for the coefficients were entered without on-the-fly arith-
metic (explained in Section 4.2.1).

• Individual steps in the arithmetic are indicated, as is the final assembly.

Thus, when the method is familiar, a compressed notation provides an effective
potential proof that the outcome is correct.
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4.1.2.3 Example, Solutions of Linear Systems

For which values of a is the solution of the system not unique?

x+ ay + 2z = −1
3y + az = 2− a

4x+ y = 13

Solution:

The solution to a square linear system is not unique exactly when the deter-
minant of the coefficient matrix is zero. The coefficient matrix here is 1 a 2

0 3 a
4 1 0


Row operations R3 = R3 − 4R1 and R3 = R3 − 1−4a

3 R2 do not change the
determinant and reduce this to a triangular matrix with R3 = (0, 0,−8−a 1−4a

3 ).
The determinant of a triangular matrix is the product of the diagonal entries,
so the determinant is

(1)(3)(−8− a1− 4a
3

) = −24− a(1− 4a) = 4a2 − a− 24

This is zero for a = (−1±
√

385)/8.

4.1.2.4 Comments

This example is a bit less detailed than the previous one in that some calculations
(effects of the row operations and application of the quadratic formula) are not
recorded. Presumably they are on a separate paper, but because the operations
themselves are recorded the calculations can be completely reconstructed. At
the level of this example, students should be able to reliably handle such hidden
steps and explicit display should not be necessary.

An alternative evaluation of the determinant might be: “Cramer’s rule ap-
plied to the second row gives (+1)(3)(−4× 2) + (−1)(a)(1− 4a) . . . ”.

Cramer’s rule involves adding up: a sign times the entry times the deter-
minant of the matrix obtained by omitting the row and column containing the
entry. The expression reflects this structure, with the 2× 2 determinants eval-
uated. Giving relatively unprocessed expressions like this both reduces errors
(by separating organization from calculation) and allows quick pin-pointing of
them when they occur. For example, it would be possible to distinguish a sign
error in the second term due to a misunderstanding of Cramer’s rule, from a
sign error in the evaluation of the sub-determinant.

Students will not give this sort of explanation without examples to copy and
quite a bit of guidance. This guidance might include:
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• When using a theorem (e.g. nonzero determinant if and only if unique
solutions), say enough about it to inspire confidence that you know a
precise statement and are using it correctly. Confused statements indicate
that conceptual errors are likely in the future, even if this wasn’t the
problem in this case.

• In particular, mention of the theorem is an essential part of the work and
must be included even in short–form versions. (For additional discussion
of style in short–form proofs, see Proof Projects for Teachers in [8].)

• In lengthy calculations, rather than showing all details, describe the steps
and carry out details on a separate sheet. The descriptions should be
explicit enough to enable reconstruction of the details. Organizing work
this way both reduces errors and makes it easier to check.

It can be helpful to have students check each others’ work and give explicit
feedback on how well the layout supports checking. The eventual goal is for
them to diagnose their own work; trying to make sense of others’ work can give
insight into the process.

4.1.2.5 Further Examples

For further discussion, and examples of elementary formal proofs concerning
fractions and area, see Proof Projects for Teachers [8].

4.1.3 Proof and Correctness

A proof is a potential proof that has been checked for errors and found to be
error-free.

Work that does not qualify as a potential proof cannot be a proof even if the
conclusion is known to be correct. In education, the goal is not a correct answer
but to develop the ability to routinely get correct answers; facility with potential
proofs is the most effective way to do this. Too much focus on correctness may
undercut development of this facility.

This is usually not an issue with weak students because potential proofs are
an enabling technology without which they cannot succeed. Weak students tend
to have the opposite problem: the routines are so comforting and the success
so rewarding that it can be hard to get them to compress notation (e.g. avoid
recopying) or omit minor details even when they have reached the point where
it is safe to do so. Similarly, some persist in writing out formal justifications
even after they have thoroughly internalized the ideas.

Strong students are more problematic, because the connection between good
work habits and correct answers is less direct. I have had many students who
were very successful in high-school advanced placement courses, but they got by
with sloppy work because the focus was on correctness rather than methodology.
Many of these students have trouble with engineering calculus in college:
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• The better students figure it out, especially with diagnostic support and
good templates (Section 4.2). Most probably never fully catch up to where
they might have been, but they are successful.

• Unfortunately a significant number were good enough to wing it in high
school and good enough to have succeeded in college with good method-
ological preparation, but are not good enough to recover from poor prepa-
ration.

All students stand to benefit from a potential-proof-oriented curriculum rather
than a correctness-oriented one, but for different reasons. Gains by weak and
mid-range students are likely to be clearest.

4.1.4 The Role of Diagnosis

The thesis of this article is that the reliability possible with mathematics can
be realized by making mathematical arguments that can be checked for errors,
checking them, and correcting any errors found. Other sections describe how
checkable arguments could become a routine part of mathematics education.
However they won’t produce benefits unless checking also becomes a routine
part. To be explicit: Diagnosis and error correction should be key focuses in
mathematics education.

• Answers are important mainly as proxies for the work done. Incorrect an-
swers indicate a need for diagnosis and correction. Ideally, every problem
with a wrong answer should be diagnosed and corrected.

• Mathematics uniquely enables quality, so the emphasis should be on qual-
ity not quantity. In other words, doing fewer problems to enable spending
more time on getting them right is a good tradeoff.

• An important objective is to teach students to routinely diagnose their
own work. The fact that diagnosis is possible and effective is the essence
of mathematics, so teaching self-diagnosis is mathematics education in the
purest sense.

Ideally, teachers would regularly go through students’ work with them so
students can see the checking process in action. Students should be required
to redo problems when the work is hard to check, not just when the answer is
wrong. As explained in the previous section, the goal is to establish work habits
that will benefit students; however students respond to feedback from teachers,
not to long–term goals.

4.1.5 Other Views of Proof

There are many other—and quite different—views of the role of proof (c.f. [1],
[11], [12]). These generally emphasize proofs as sources of understanding and
insight, or as repositories of knowledge.
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The basic difference is that I have emphasized proofs as an enabling technol-
ogy for users. Most other views focus on “spectator proofs”: arguments from
which readers should benefit, but that are not intended as templates for emu-
lation. Both views are valid in their own way, and this should be kept in mind
when considering specific situations.

What counts as user-oriented or spectator-oriented, and the mix in prac-
tice, varies enormously with level. In school mathematics—as illustrated here—
almost everything is designed for emulation. Spectator proofs play little or no
role. Issues that might be addressed with spectator proofs (e.g., how do we
know the multiplication algorithm really works?) are simply not addressed at
all.

At intermediate levels, college math majors for instance, spectator proofs
play a large role. They provide ways for students to learn and develop skills
long before they can be emulated. At the research frontier the primary focus is
again on user-oriented work. It is a nice bonus if an argument functions as a
spectator proof (i.e., is “accessible”), but if the argument cannot be fleshed out
to give a fully-precise user-oriented proof it is unsatisfactory.

Misunderstanding these different roles of proof has led to conflict and con-
fusion. For example, Thurston [12] justified his failure to provide a proof of a
major claim by observing that the technology needed for a good spectator proof
was not yet available. This point resonated with educators since they have a
mainly spectator-oriented conception of proof. However Thurston was respond-
ing to criticism [2] that he had failed to provide a user-oriented proof for use
in the research community. An inability to provide a spectator proof was not
accepted as justifying the failure to provide any proof at all. The problem was
later declared unsolved, and complete proofs were eventually provided by others
(see [5]).

4.2 Proof Templates

Students learn mainly by abstraction from examples and by imitating proce-
dures. It is important, therefore, to carefully design examples and procedures
to guide effective learning.

A “proof template” is a procedure for working a class of problems. Design
considerations are:

• Procedures should clearly reflect the mathematical structures they exploit.
This makes them more reliable and flexible, and often provides subliminal
preparation for more complex work.

• Procedures should minimize problems with limitations of human cogni-
tive abilities. For example, conceptually distinct tasks such as translating
word problems, organizing a computation, or doing arithmetic, should be
separated.

• Efficient short–form versions should be provided.
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Examples in this section explain and illustrate these points.

4.2.1 Polynomial Multiplication
1

4.2.1.1 Problem

Write (3z2 − z + 5a)(z3 + (2− a)z2 − a) as a polynomial in z. Show steps.

4.2.1.2 Step 1: Organization

There are three terms in each factor, so there will be nine terms in the product.
Some organizational care is needed to be sure to get them all. Further, we would
like to have them sorted according to exponent on z rather than producing them
at random and then sorting as a separate step. To accomplish this, we set up a
blank form in which to enter the terms. A quick check of exponents shows that
all exponents from 0 to 5 will occur, so the appropriate blank form is:

z5[ ] + z4[ ] + z3[ ]+

z2[ ] + z1[ ] + z0[ ]

Next, scan through all possible combinations of terms, one from each factor.
(Use a finger to mark your place in one term while scanning the other.) For
each combination, write the product of coefficients in the row with the right
total exponent. The result is:

z5[(3)(1) ] + z4[(3)(2− a) + (−1)(1)] + z3[(−1)(2− a) + (5a)(1)]+

z2[(3)(−a) + (5a)(2− a)] + z1[(−1)(−a) ] + z0[(5a)(−a) ]

Note the products were recorded with absolutely no arithmetic, not even writing
(3)(1) as 3. Reasons are:

• Organization and arithmetic are cognitively different activities. Switching
back and fourth increases the error rate in both, with sign errors being
particularly common.

• This form can be diagnosed. We can count the terms to see that there are
nine of them and the source of each term can be identified. The order of
scanning can even be inferred, though it makes no difference.

Note also that every term is enclosed in parentheses. This is partly to avoid
confusion, because juxtaposition is being used to indicate multiplication. The
main reason, however, is to avoid thinking about whether or not parentheses
are necessary in each case. Again, such thinking is cognitively different from
the organizational task and may interfere with it.

1This material is adapted from the polynomial problem list in [9].
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4.2.1.3 Step 2: Calculation

Simplify the coefficient expressions to get the answer:

3z5 + (5− 3a)z4 + (6a− 2)z3 + (7a− 5a2)z2 + az + (−5a2)

In this presentation the only written work is the organizational step and the
answer. More complicated coefficient expressions, or less experienced students,
would require recording some detail about the simplification process. A notation
for this is shown in the arithmetic example in Section 4.1.2.1.

4.2.1.4 Comments

• The separation of organization and computation makes the procedure re-
liable and relatively easy to use.

• The close connection to mathematical structure makes the procedure flex-
ible. It is easily modified to handle problems like “Find the coefficient on
z3” or “Write a product involving both x and y as a two-variable polyno-
mial”.

• Variations provide methods for by-hand multiplication of integers (Section
4.1.2.1) and multiplication of large integers using a calculator (Section
4.3.1).

• If the baby version in Section 4.1.2.1 is used to multiply integers, then
students will find the polynomial version familiar and easy to master.

• Similarly, students who work with polynomials this way will find some
later procedures (e.g., products of sums that may not be polynomials, or
iterated products like the binomial theorem) essentially familiar and easier
to master.

This procedure should be contrasted with the common practice of restricting
to multiplication of binomials, using the “FOIL” mnemonic2. That method is
poorly organized even for binomials, inflexible, and doesn’t connect well even
with larger products. In particular, students trained with FOIL are often un-
successful with products like the one in the example.

4.2.2 Solving Equations

This is illustrated with a very simple problem, so the structuring strategies will
be clear.

2First, Outer, Inner, Last.
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4.2.2.1 Problem

Solve 5x− 2a = 3x− 7 for x.

Annotated Solution:

Explanation Result
Collect terms: move to other side 5x− 3x = −7 + 2a

by adding negatives
calculate (5− 3)︸ ︷︷ ︸

2

x = −7 + 2a

move coefficient to other side x = 1
2 (−7 + 2a)

by multiplying by inverse

4.2.2.2 Comments

The primary goals in this format are efficiency and separation of different cog-
nitive activities (organization and calculation).

The first step is organizational: we decide that we want all x terms on one
side and all others on the other. Collecting x terms can be accomplished by
adding −3x to each side. However it is inefficient to do this as a separate
calculation step because we know ahead of time what will happen on the right
side: we have chosen the operation exactly to cancel the 3x term. Instead we
think of it as a purely organizational step: “move 3x to the other side. . . ”. To
keep it organizational we refrain from doing arithmetic (combining coefficients)
and include “by adding negatives” to the mental description.

The second step is pure calculation.
The final step is again organizational, and the description is designed to

emphasize the similarity to the first step.
Finally, the steps are guided by pattern–matching: The given expression is

manipulated to become more like the pattern x =?. (See the next section for
another example.)

4.2.3 Standardizing Quadratics

This is essentially “completing the square” with a clear goal.

4.2.3.1 Problem

Find a linear change of variables y = ax + b that transforms the quadratic
5x2− 6x+ 21 into a standard form r(y2 + s) with s one of 1, 0− 1, and give the
standard form.

This is done in two steps, each of which brings the expression closer to the
desired form. A short-form version is given after the explanation.
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4.2.3.2 First Step

Eliminate the first-order term with a change of the form y0 = x+ t.

Square the general form and multiply by 5 to get 5y2
0 = 5x2 + 10tx + 5t2,

which has the same second-order term as that of the given quadratic. To match
the first-order term as well we need 10t = −6, so t = −3/5 and y0 = x − 3/5.
Moving the constant term to the other side gives 5y2

0 − 5t2 = 5x2− 6x. Use this
to replace the first- and second-order terms in the original to transform it to

5(y0)2−5(−3/5)2 + 21︸ ︷︷ ︸
− 9

5+ 105
5 = 96

5

(4.1)

4.2.3.3 Second Step

Factor out a positive number to make the constant term standard.

5y2
0 +

96
5

=
96
5

(
52

96
y2
0︸ ︷︷ ︸

( 5√
96
y0)2

+1) (4.2)

The number factored out must be positive because we had to take the square
root of it.

Comparing with the goal shows the standard form is 96
5 (y2 + 1) with y =

5√
96
y0 = 5√

96
(x− 3

5 ).

4.2.3.4 Short Form

5(x+ t︸ ︷︷ ︸
y0

)2 = 5x2 + 10t︸︷︷︸
−6

x+ 5t2

So t = −3/5.
5x2 − 6x︸ ︷︷ ︸+21︸︷︷︸

5y2
0 −5(3/5)2 + 21︸ ︷︷ ︸

96
5

= 96
5 (

5
96

5y2
0︸ ︷︷ ︸

( 5√
96
y0)2

+1)

So y = 5√
96
y0 = 5√

96
(x− 3

5 ) and the form is 5
96 (y2 + 1).

Methods must be introduced with explanations, but compression is necessary
for routine use. It is important for teachers to provide a carefully-designed short
format because the compressions which student invent on their own are rarely
effective.

For example, it is often necessary to simplify a fragment of an expression.
The underbrace notation here indicates precisely which fragment is involved
and connects it to the outcome. I have never seen a student do this. Usually,
the student either writes fragments without reference or rewrites the whole
expression.
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Experience often reveals errors that need to be headed off by the notation.
In the work above, the notation

5y2
0 −5(3/5)2 + 21︸ ︷︷ ︸

96
5

clearly indicates that the sign on −5(3/5)2 is part of the fragment being sim-
plified. Many students seem to think of this sign as the connector between the
expression fragments, and hence do not include it in the sub-expression. It then
gets lost. This is a common source of errors, and may well have resulted in
the student making an error in this case. Providing a clear notation and being
consistent in examples will avoid such errors.

4.2.3.5 Pattern Matching

Routine success requires that at any point the student can figure out “What
should I do next?” In the problem above there is a direct approach: Plug
y = ax + b into the given quadratic, set it equal to r(y2 + s), and solve for
a, b, r, s. This can be simplified by doing it in two steps, as above, but even so
it requires roughly twice as much calculation as the method given above. This
is a heavy price to pay for not having to think.

By contrast, the suggested procedure uses pattern matching to guide the
work. It can be summarized as “What do we have to do to the given quadratic
to get it to match the standard pattern?” In the first step we note that the
given one has a first-order term and the pattern does not. We get closer to the
pattern by eliminating this term, getting something of the form Ay2

0 +B. If B
is not 1, 0, or −1 we can get closer to the pattern by factoring something out
to get C(Dy2

0 + s) with standard s. The only thing remaining to exactly match
the pattern is to rewrite Dy2

0 as a square, and whatever result we get is the y
we are seeking.

Pattern matching is a powerful technique, a highly-touted feature of com-
puter algebra systems, and humans can be very good at it. Much of the work in
a calculus course can be seen as pattern-matching. Students could use it more
effectively if teachers presented the idea more explicitly.

4.2.4 Summary

Carefully-designed procedures and templates for students to emulate can greatly
improve success and extend the range of problems that can be attempted. Im-
portant factors are:

• Procedures should follow the underlying mathematical structure as closely
as possible. Doing so reveals connections, provides flexibility, and expands
application. It also ensures upward-compatibility with later work, and
frequently provides subliminal preparation for this work.

• Ideas that guide the work, pattern matching for example, should be ab-
stracted and made as explicit as possible for the level.
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• Procedures should separate different cognitive tasks. In particular, orga-
nizational work should be kept separate from computation.

• Short-form formats that show the logical structure (i.e., are checkable)
and encourage good work habits should be provided.

Good test design can also encourage good work habits. For example:

• Ask for a single coefficient from a good-sized product like the example in
Section 4.2.1. This rewards students who understand the organizational
step well enough to pick out only the terms that are needed.

• A computer-based test might ask for an algebraic expression that evalu-
ates to give the coefficient3. The students could then enter the unevalu-
ated output from the organizational step. This approach rewards careful
separation of organization and calculation, by reducing the time required
and reducing the risk of errors in computation.

4.3 Long Problems

Current pre-college mathematics education is almost entirely concerned with
short, routine problems. Advanced-placement courses may include short tricky
problems. However, much of the power of mathematics comes from its success
with long routine problems. Because the conclusions of each step can be made
extremely reliable, many steps can be put together and the combination will still
be reliable. Further, carefully-designed methods for dealing with short problems
will apply to long problems equally well.

Long problems have an important place in elementary mathematics educa-
tion. They give a glimpse into the larger world and illustrate the power of the
methods being learned. They also reveal the need for care and accuracy with
short problems. It is not clear how long problems might be incorporated into
a curriculum, but group projects are a possibility. The examples here are pre-
sented as group problems about multiplication and addition of large integers
(with calculators) and logic puzzles.

4.3.1 Big Multiplications

The goal is to exactly multiply two large (say 14- or 15-digit) integers using
ordinary calculators. This cannot be done directly so the plan is to break the
calculation into smaller pieces (e.g., 4-digit multiplications) that can each be
done on a calculator, and then assemble the answer from these pieces. The
method is the same as the by-hand method for getting multi-digit products
from single-digit ones, and uses a notation (like that of Section 4.1.2.1) modeled
on polynomial multiplication.

3Tests with this kind of functionality are a goal of the EduTEX project [10].
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The number of digits in each piece depends on the capability of the calcula-
tors used. The product of two 4-digit numbers will generally have 8 digits. We
will be adding a list of these, but no more than nine, so the outcome will have
9 or fewer digits. Four-digit blocks will therefore work on calculators that can
handle nine digits. Eight–digit calculators would require the use of three-digit
blocks.

4.3.1.1 Problem

Multiply 638521988502216 and 483725147602252, using calculators that handle
9 or more digits, by breaking them into 4–digit blocks.

4.3.1.2 Step 1: Organize the Data

Write the numbers as polynomials:

638521988502216 = 2216 + 8850x+ 5219x2 + 638x3

483725147602252 = 2252 + 4760x+ 7251x2 + 483x3

where x = 104.
The power-of-ten notation should be used even with pre–algebra students,

because it is a powerful organizational aid. The exponent records the number
of blocks of four zeros that follow these digits.

4.3.1.3 Step 2: Organize the Product

The product of two sums is gotten from all possible products, using one piece
from each term. Individual terms follow the rule (axn)(bxk) = (ab)xn+k, which
we use to organize the work. The product will have terms xr for r = 0, . . . , 6
and seven individuals or teams could work separately on these.

For instance, the x2 team would collect the pairs of terms whose exponents
add to 2: x0 (x not written) from the first number and x2 from the second, then
x1 from the first and x1 from the second, etc. They would record:

x2(2216× 7251 + 8850× 4760 + 5219× 2252)

This is an organizational step; no arithmetic should be done. The students can
infer how the pieces were obtained, and can double–check each other to see that
nothing is out of place and no pieces were left out.

4.3.1.4 Step 3: Compute the Coefficient

Carry out the arithmetic indicated in the second step, using calculators. If the
students can use a memory register to accumulate the sum of the successive
products then the output is the answer, x2(69947404). If the multiplications
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and addition have to be done separately then the notation of Section 4.1.2.1
can be used:

x2((2216× 7251︸ ︷︷ ︸
16068216

+ 8850× 4760︸ ︷︷ ︸
42126000

+ 5219× 2252︸ ︷︷ ︸
11753188︸ ︷︷ ︸

69947404

)

Again, different students or teams should double-check the outcomes.

4.3.1.5 Step 4: Assemble the Answer

At this point the group has found the product of polynomials,

4990432+30478360x+69947404x2+91520894x3+45154399x4+7146915x5+308154x6

and the next step is to evaluate at x = 104, or in elementary terms translate
the powers of x back to blocks of zeros, and add the results. The next section
gives a way to carry out the addition.

4.3.2 Big Additions

The goal is to add a list of large integers using ordinary calculators. This cannot
be done directly, so the plan is to break the operations into smaller pieces (e.g.,
6–digit blocks) that can be done on a calculator and then assemble the answer
from these pieces. The procedure is illustrated with the output from the previous
section.

4.3.2.1 Problem

Use calculators to add 4990432+30478360×104 +69947404×108 +91520894×
1012 + 45154399× 1016 + 7146915× 1020 + 308154× 1024 using 6–digit blocks.

4.3.2.2 Step 1: Setup

4 990432
304783 600000

6994 740400
91 520894

451543 990000
714 691500

308154

Here we have written the seven numbers to be added in a column with aligned
digits. Vertical lines are drawn to separate the 6-digit blocks, and we omit
blocks that consist entirely of zeros. We have not, however, omitted zeros at
the end of blocks because doing this would mix organizational and arithmetic
thinking.
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4.3.2.3 Step 2: Add 6–digit Columns

4 990432
304783 600000

6994 740400
91 520894

451543 990000
714 691500

308154
308868 1 517888 1 590432

1 143134 1 045187

Each column is added separately, for instance by five different students; again,
the outcomes should be double–checked.

Most of the sums overflow into the next column. We have written the sums
of the even–numbered columns one level lower to avoid overlaps. Since there
are fewer than nine entries in each column, the sum can overflow only into the
first digit of the next column to the left.

4.3.2.4 Step 3: Final Assembly

Add the sums of the individual columns:

308868 1 517888 1 590432
1 143134 1 045187

308869 143135 517889 045188 590432

In this example the final addition is easy, because the overflow from one column
only changes one digit in the next. This happens in most cases; if examples are
chosen at random, it is very unlikely that students will see more than two digits
change due to overflow.

Students should realize, however, that digits in sums are unstable in the sense
that, very rarely, an overflow will change everything to the left. Teachers should
ensure that students encounter such an example, or perhaps challenge them
to contrive an example that makes the simple-minded pattern crash. This phe-
nomenon illustrates the difference between extremely unlikely events and mathe-
matically impossible ones, and the “low–probability catastrophic failures4” that
can occur when the difference is ignored.

4.3.3 Digits in Big Products

The goal here is to find a specific digit in a product of big numbers, and be sure
it is correct. An attractive feature of the formulation is that careful reasoning
and understanding of structure are rewarded by a reduction in computational
work.

4A term from the computational software community, where this is a serious problem.
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The least-thought/most-work approach is to compute the entire number and
then throw away all but one of the digits. I give three variations with increas-
ing sophistication and decreasing rote computation. In practice, students (or
groups) could be allowed to choose the approach that suits their comfort level.
More-capable students will enjoy exploiting structure to achieve efficiency. Less-
capable ones will be aware of the benefits of elaborate reasoning, but may see
additional rote computation as a safer and more straightforward.

4.3.3.1 Problem

Find the eighteenth digit (from the right, i.e. in the 1017 place) in the product
52498019913177259058× 33208731911634712456.

4.3.3.2 Plan A

We approach this as before, by breaking the numbers into 4-digit blocks and
writing them as coefficients in a polynomial in powers of x = 104. These are
20-digit numbers so there are five 4-digit blocks and this gives polynomials of
degree 4 (powers of x up to x4). The product has terms up to degree 8.

The eighteenth digit is the second digit in the fifth 4-digit block (18 =
4 × 4 + 2). When working with polynomials in x = 104 this means it will be
determined by the terms of degree x4 and lower (the coefficient on x5 gets 20
zeros put after it, so cannot effect the 18th digit).

Plan A is to compute the polynomial coefficients up to x4, combine as before
to get a big number, and see what the 18th digit is. This gives a significant
savings over computing the whole number because we don’t find the x5 . . . x8

coefficients.

4.3.3.3 Plan B

This refinement of Plan A reduces the work done on the x4 coefficient.
We only need the 18th digit, so only need the second (from the right) digit

in the coefficient on x4. To get this we only need the product of the lowest two
digits in each term. To make this explicit, the terms in the coefficient on x4 are:

x4(9058× 3320 + 7725× 8731 + 9131× 9116 + 8019× 3471 + 5249× 2456)

But we only need the next-to-last digit of this. If we write the first term as
(9000 + 58)× (3300 + 20), then the big pieces don’t effect the digit we want. It
is sufficient just to compute 58× 20.

This modification replaces the x4 coefficient by

x4(58× 20 + 25× 31 + 31× 16 + 19× 71 + 49× 56)

Lower coefficients are computed and the results are combined to give a single
number as before. This number will have the same lower 18 digits as the full
product, and in particular will have the correct 18th digit.
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4.3.3.4 Plan C, Idea

Plans A and B reduce work by not computing unneeded higher digits. Here,
we want to reduce work by not computing unneeded lower digits. The overflow
problem makes this tricky, and some careful estimation is needed to determine
how bad lower-digit overflows can be. This is a nice opportunity for good
students to exploit their talents.

1. The coefficients in the product polynomial have at most nine digits (prod-
ucts of 4–digit numbers have at most 8 digits, and we are adding fewer
than nine of these in each coefficient). The x2 term therefore has at most
9 + 2× 4 = 17 digits. This can effect the 18th digit only through addition
overflow.

2. The plan, therefore, is to compute the coefficients on x4 and x3, combine
these to get a number, and see how large a 17-digit number can be added
before overflow changes the 18th. We will then have to estimate the x2

and lower terms and compare this to the overflow threshold.

• If the lower-order terms cannot cause overflow into the 18th digit,
then the 18th digit is correct.

• If lower terms might cause overflow, then we will have to compute
the x2 coefficient exactly, combine with the part already calculated,
and see what happens. In this case, we will also have to check to see
if degree 0 and 1 terms cause overflow that reaches all the way up to
the 18th digit. This is extremely unlikely: These terms have at most
9 + 1× 4 = 13 digits, so overflow to the 18th can only happen if the
14th through 17th digits are all 9.

• In this unlikely worst-case scenario we will have to compute the lower-
order terms too.

4.3.3.5 Plan C, Setup and Compute

The x3 coefficient and Plan B version of the x4 coefficient are:

x4 (58× 20 + 25× 31 + 31× 16 + 19× 71 + 49× 56)
x3 (9058× 8731 + 7725× 9116 + 9131× 3471 + 8019× 2456)

Computing gives 200894863x3 + 6524x4. Substituting x = 104 gives

(200894863 + 65240000)× 1012 = 266134863× 1012.

The 18th digit (from the right) is 1. It is not yet certain, however, that this is
the same as the digit in the full product.
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4.3.3.6 Plan C, Check for Overflow

The 17th digit in 266134863 × 1012 is 3. If the top (i.e. 9th) digit in the x2

coefficient is 5 or less then adding will not overflow to the 18th digit. (3+5 = 8,
and overflow from the x1 and x0 terms can increase this by at most one).

The next step is to estimate the top digit in this coefficient.

1. The x2 coefficient has three terms (from x0x2, x1x1, and x1x0).

2. Each term is a product of two 4-digit numbers, so each has at most 8
digits. In other words the contribution of each term is smaller than 109.
Adding three such terms gives a total coefficient smaller than 3× 109.

3. When we substitute x = 104 we get a number less than 3× 1017. The top
digit is therefore at most 2.

4. Since the top digit of the lower-order term is smaller than the threshold for
overflow (2 ≤ 5), we conclude that the 18th digit found above is correct.

We were fortunate: If the 17th digit coming from the higher–order terms had
been 7, 8, or 9 then we could not rule out overflow with this estimate. For
borderline cases I describe a refined estimate that gives a narrower overflow
window.

The actual coefficient on x2 is 131811939. Knowing this, we see that a 17th
digit 7 would not have caused an overflow, while a 9 would have increased the
18th digit by 1, and 8 is uncertain. This conclusion can be sharpened by using
more digits: If digits 15-17 are 867 or less, then there is no overflow; if they are
869 or more then there is an overflow of 1; and the small interval between these
numbers remains uncertain. As noted above, in rare cases lower–order terms
have to be computed completely to determine whether or not overflow occurs.

4.3.3.7 Grand Challenge

Use this method to find the 25th digit of the product of two fifty–digit numbers.

4.3.4 Puzzles

We will not explore them here but logic puzzles deserve mention as opportu-
nities for mathematical thinking (see Wanko [13], and Lin [3]). These should
incorporate an analog of proof: a record of moves that enables reconstruction
of the reasoning and location of errors. The notation for recording chess moves
(see Wikipedia) may be a useful model.

A minor problem is that the rules of many puzzles are contrived to avoid
the need for proof-like activity and should be de-contrived.

For example, the usual goal in Sudoku is to fill entries to satisfy certain
conditions. The final state can be checked for correctness and—unless there is
an error—would seem to render the record of moves irrelevant. A better goal
is to find all solutions. If the record shows that every move is forced, then the

http://en.wikipedia.org/wiki/Chess#Notation_for_recording_moves
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solution is unique. However, if at some point no forced moves can be found and
a guess is made, all branches must be followed. If a branch leads to an error,
that branch can be discarded (proof by contradiction). If a branch leads to a
solution, then other branches still have to be explored to determine whether
they also lead to solutions. This would be made more interesting by a source of
Sudoku puzzles with multiple solutions.

Notations and proof also enable collaborative activity. All members of a
group would be given a copy of the puzzle, and one appointed “editor”. On
finding a move, a member would send the notation to the editor as a text
message. The editor would check for correctness and then forward the move
to the rest of the group. Maintaining group engagement might require a rule
like: Whoever submits a move must wait for someone else to send one before
submitting another.

4.4 Word Problems and Applications

This essay concerns the use of contemporary mathematical methodology in ed-
ucation. Up to this point the ideas have been unconventional and possibly
uncomfortable but more-or-less compatible with current educational philoso-
phy.

There are, however, genuine conflicts where both contemporary methodology
and direct experience suggest that educational practices are counterproductive,
not just inefficient. Some of the methodological conflicts are discussed in this
section. A more systematic comparison is given in Mathematics Education is
Poorly Adapted in [8], and conflicts in concept formation are discussed in Con-
temporary Definitions for Mathematics Education in [8]. Historical analysis in
[5] indicates that many educational practices are modeled on old professional
practices that were subsequently found ineffective and were discarded.

4.4.1 Word Problems and Physical-World Applications

The old view was that mathematics is an abstraction of patterns in the physical
world and there is no sharp division between the two. The contemporary view is
that there is a profound difference and the articulation between the two worlds
is a key issue. The general situation is described in [5]; here I focus on education.

4.4.1.1 Mathematical Models

In the contemporary approach, physical-world phenomena are approached indi-
rectly: a mathematical model of a phenomenon is developed and then analyzed
mathematically. The relationship between the phenomenon and the model is
not mathematical, and is not accessible to mathematical analysis.
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4.4.1.2 Example

A beaker holds 100 cc. of water. If 1 cc of X is added, what is the volume of
the result?

Expected solution: 100 + 1 = 101 cc.

4.4.1.3 Discussion

The standard expected solution suppresses the modeling step. Including it gives:

Model: volumes add.

Analysis: 100 + 1 = 101 so the model predicts volume 101 cc.

The analysis of the model is certainly correct, so it correctly predicts the
outcome when the model applies: for example, if X is water. If X is sand, salt,
or alcohol, then the volume will be more than 100 cc. but significantly less than
the predicted value of 101 cc. If X is metallic sodium a violent reaction takes
place. When the smoke clears, the beaker will contain considerably less than
100 cc., and may be in pieces.

In the latter instances, the prediction fails because the model is not appropri-
ate. This is not a mathematical difficulty. In particular no amount of checking
the written work can reveal an error that accounts for the failure. One might
try to avoid the problem in this case by specifying that X should be water, but
discrepancies could result from differences in temperature. Even elaborately
legalistic descriptions of the physical circumstances cannot completely rule out
reality/model disconnects.

The point is that the reality/model part of real-world applications is essen-
tially non-mathematical. Applications have an important place in mathematics
courses, but the reality/model aspect should not be represented as mathematics.

Equally important, modeling and analysis of the model are different cognitive
activities. Failing to separate them increases error rates, just as happens with
organization and calculation (see Section 4.2.1). Students may be successful
without separating modeling and analysis when the mathematical component
is trivial, as is often the case in pre-college courses these days. However diffi-
culties grow rapidly as complexity grows, so in practice failing to separate these
activities makes significant applications impossible.

4.4.2 Applications

Mathematics is brought to life through applications. In this context the word
“application” is usually understood to mean “physical-world application”. How-
ever, such applications alone do a poor job of bringing elementary mathematics
to life. After explaining why, I suggest that there are better opportunities using
applications from within mathematics.
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4.4.2.1 Difficulties with the Real World

The main difficulty with physical-world applications is a complexity mismatch.
In one direction, there are impressive applications of elementary mathematics,
but they require significant preparation in other subjects. On the other hand
there are easily-modeled real-world problems but these tend to be either math-
ematically trivial or quite sophisticated.

Examples of applications of elementary mathematics:

• One can do interesting chemistry with a little linear algebra, but the
model-building step requires a solid grasp of atomic numbers, bonding
patterns, etc. The preparation required is probably beyond most high-
school chemistry courses and certainly beyond what one could do in a
mathematics course.

• There are nice applications of trig functions to oscillation and resonance
in mechanical systems, electric circuits, and acoustics. Again, subject
knowledge requirements makes these a stretch even in college differential
equations courses.

• Multiplication of big integers, as in Section 4.3.1, plays an important role
in cryptography, but it is not feasible to develop this subject enough to
support cryptographic “word problems”.

Problems with easily-modeled situations include:

• It is difficult to find problems that are not best seen as questions in calculus
or differential equations (or worse).

• Special cases may have non-calculus solutions, but these solutions tend to
be tricky and rarely give insight into the problem.

• Even as calculus problems, most “simple” models lead to mathematical
questions too hard for use in college calculus.

• Our world is at least three-dimensional. Many real problems require vec-
tors in all but the most contrived and physically-boring cases.

In other words, real-world problems should be part of a serious development
of a scientific subject in order to be genuinely useful. The next section describes
difficulties that result when this constraint is ignored.

4.4.2.2 Bad Problems

The practical outcome of the complexity mismatch described above is that most
word problems—in the US anyway—have trivial or very constrained mathemat-
ical components and the main task is formulation of the model (e.g., the example
in Section 4.4.1.1).

Some elementary–education programs exploit this triviality with a “key-
word” approach: “When a problem has two numbers, then the possibilities
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are multiplication, division, addition or subtraction. Addition is indicated by
words ‘added’, ‘increased by’ . . . ”. The calculator version is even more mind-
less, because the operations have become keystrokes rather than internalized
structures that might connect to the problem: “Press the “+” key if you see
‘added’, ‘increased by’, . . . .”

The higher-level version of this can be thought of as “reverse engineering”:
Since only a few techniques are being tested, one can use keywords or other
commonalities to figure out which method is correct and where to put the num-
bers.

Other problem types amount to translating jargon: Replace “velocity” with
“derivative”, “acceleration” with “second derivative”, . . . .

• In other words, there is so little serious contact with any real-world subject
that translation and reverse-engineering approaches that avoid engage-
ment are routinely successful, and are fast and reliable. Students who
master this skill may enjoy word problems, because the trivial math core
makes success easy.

• The errors I see make more sense as translation problems than conceptual
problems. A common example: When one is modeling the liquid in a
container, liquid flowing out acquires a negative sign, because it is being
lost from the system. Translators miss the sign, students who actually
envision the situation should not.

• Some of my students despise word problems, regarding them as easily-
solved math problems made hard by a smokescreen of terminology and
irrelevant material. These students may be weak at this cognitive skill, or
they may be thinking too much and trying to engage the subject. In any
case, the most effective help I can offer is to show them how to think of it
as an intelligence-free translation problem.

• Finally, many problems are so obviously contrived that they cannot be
taken seriously. The one that begins “If a train leaves Chicago at 2:00. . . ”
has been the butt of jokes in comic strips.

Conventional wisdom holds that word problems engage students and provide
an important connection to real-world experience. This notion is abstractly
attractive, but the difficulties described above keep it from being effective in
practice. Further, a curriculum justified by, or oriented toward, word problems
is likely to be weak, because weak development is good enough for immediately-
accessible problems.

4.4.3 Mathematical Applications

A common justification for word problems is that mathematics is important
primarily for its applications, and math without applications is a meaningless
formal game. I might agree, with the following reservations:
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• Goals should include preparation for applications that will not be acces-
sible for years, not just those that are immediately accessible.

• “Application” should be interpreted to include applications in mathemat-
ics as well as real-world topics.

The application of polynomial multiplication to multiplication of big integers in
Section 4.3.1, and the refinements developed in Section 4.3.3 to minimize the
computation required to find individual digits, are examples:

• These two topics clearly have genuine substance, and they support ex-
tended development.

• Unlike physical-world topics, they are directly accessible, because they
concern mathematical structure that has already been extensively devel-
oped.

• The multiplication algorithm (4.3.1) does have real-world applications,
even if these are not accessible to students. In any case, it is a good
example of the kind of mathematical development that has applications.

• The single-digit refinement (4.3.3) is a very good illustration of a major ac-
tivity in computational science: carefully exploiting structure to minimize
the computation required to get a result.

• The Plan C variation (4.3.3.4) provides an introduction to numerical in-
stability and “low-probability catastrophic failure” of algorithms. This
is a major issue in approximate (decimal) computation but is completely
ignored in education.

• Both projects significantly deepen understanding of the underlying math-
ematical structure, and develop mathematical intuition.

The main objection to mathematical applications is that, because they lack
contact with real-world experience, they do not engage students. I believe this
underestimates the willingness of students to engage with almost anything if
they can succeed with it. Further, the more obviously nontrivial the material,
the more pride and excitement they get from successful engagement.

Student success is the key, and the key to success is methods and templates
carefully designed to minimize errors. In other words, methods informed by
contemporary approaches to proof.
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Chapter 5

Proof Projects for Teachers

October 2008

Introduction

This note1 outlines projects for college students who may become elementary
or secondary teachers. This is experimental in various ways: It was written
to test and illustrate ideas in [5] about proofs, definitions, abstractions and
mathematical methods, but it has not been tested in practice. Accordingly, it
is a resource or starting point, and not intended to be used in this form.

Intended Use

Each project should be done as a unit without interruption. If students are
immersed in a topic the ideas will become familiar and easy to work with. If
there are interruptions then it is harder to develop this familiarity and the work
will be harder. Further, in the sections that are covered all problems should be
worked. Skipping material also slows development of familiarity and will make
later work harder.

Problems could be worked in groups. It is a good ideas to go over proofs in
groups to be sure that the sense is communicated correctly, see §5.1.4.1 (Style
in Short–Form Proofs).

Topics

Fractions in commutative rings are developed in §5.1. The general treatment
includes polynomial fractions (rational functions) and many other things for
little more effort than needed for a careful development of integer fractions.
The section on Grothendieck groups, §5.1.12, provides interesting prospective:

1Written for Fou-Lai Lin, with thanks for hospitality at ICMI Study 19, May 2009.
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the same construction with additive rather than multiplicative notation, and
what happens when you allow division by zero.

A formula for the area of the region enclosed by a closed piecewise linear
path is developed and explored in “Area”, §5.2. The development is relatively
elaborate, in part because students do not have a previous definition to compare
it with. Winding numbers are used to describe the general case as “area counted
with multiplicity”, and the polyhedral Jordan Curve theorem comes out of the
development.

The study of area continues in §5.3. In §5.3.1 custom–made rings are used
to explore possible extensions of the formula. Section 5.3.2 uses a vector and
matrix–product description of the area formula to explore, among other things,
how to “morph” a polygon to shift the ordering of the vertices by one place,
without changing area. Finally §?? describes ways of extending a closed polygo-
nal path to a map of the 2–disk into the plane, and interpreting the area formula
as giving the (signed) area of the image.

The final section outlines a way to introduce derivatives shortly after stu-
dents begin working with polynomials.

Audience Levels

This essay contains material for three different levels:

• For Students: descriptions or examples of materials that might be given
to school children.

• For Teachers: comments, problems, etc. addressed to prospective school
teachers (students in a “proofs for teachers” course).

• For Educators: addressed to higher–education faculty (instructors in a
“proofs for teachers” course).

Level organization is discussed at the beginning of each section. Level shifts in
text are indicated with the following somewhat clumsy method:

For Educators

Additional comments for educators, mainly concerned with design of learning
programs that include formal definitions and proofs, are collected in §5.6.

End, For Educators

5.1 Fractions

Material in this section is generally addressed to prospective teachers (students
in a “proofs for teachers” course).

The objective is to investigate fractions in a general context that includes
both integer fractions and rational functions (fractions of polynomials). This
illustrates the use of abstraction, and unexpected features to be found in good
definitions of even the simplest objects.
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5.1.1 Commutative Rings

We suppose R is a commutative ring. This means there are addition and multi-
plication operations that obey all the same basic rules as the operations in the
integers. There are, of course, axiomatic formulations of these rules (commuta-
tive, distributive etc.) but they are already familiar so you can work without
thinking about them explicitly. Examples are given in §5.1.2.

For Educators

5.1.1.1 Internalization of Structure

The point is that internalization of structure in good special cases can be trans-
ferred to the general case. In this case internalization of arithmetic structure
in integers, real numbers, and polynomials will transfer to commutative rings.
Many teachers are likely to be uncomfortable with this. They should be pushed
to do “business as usual” and prevented from thinking explicitly about the ring
axioms. Worrying about axioms increases the cognitive complexity of the de-
velopment ([5], §4.3) and makes it unnecessarily difficult.

Related to this, one of the goals is to subliminally show teachers that it is
students’ subliminal internalization of the formal structure of arithmetic that
has long–term power, not the “meaning” or numerical outcomes.

End, For Educators

5.1.1.2 Notation Comment

A ring (without “commutative”) has addition and multiplication operations
that obey the basic rules except multiplication may not commute (ab is generally
different from ba). After long experience mathematicians have found that this is
a more basic structure so it gets the short name. If multiplication does commute
then “commutative” is added.

5.1.2 Examples of Commutative Rings

1. the Integers, Z

2. the Integers modulo a number n, denoted Z/n

3. polynomials with real coefficients,

R[x] = {
n∑
i=0

aixi | some finite n and ai real}.

4. Laurent polynomials (negative exponents are allowed),

R[x, x−1] = {
n∑

i=−n
aixi | some finite n and ai real}.
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5. formal power series (“infinite polynomials”) denoted

R[[x]] = {
∞∑
i=0

aixi | ai real}.

The last three are examples of general constructions: if one starts with a com-
mutative ring R then polynomials, series etc. with coefficients in R give new
commutative rings denoted R[x], etc. Real–coefficient polynomials are given as
the example because these are important in the study of functions and calculus
but much of what we do holds more generally.

Because we are working abstractly we can study fractions in all these exam-
ples at once with the same effort needed to study integer fractions.

5.1.3 Preliminary Definition of Fractions

The key property of a fraction is that bab = a. We make this official:

Definition, preliminary version If a and b are in R then a
b is a name for the

solution of the equation b× (?) = a.

This is “preliminary” because there are serious problems with it, see §5.1.7,
and the final version has a restriction on b to ensure it makes sense. However
this discussion is postponed until after some practice work with inverses.

5.1.3.1 Notation Comment

The definition says a
b is a name for an object. Objects can have several names.

For instance the integer fraction 1
4 also has the decimal name 0.25. The fraction

name encodes the equation it satisfies, just as
√
a encodes the fact that it is the

nonnegative solution of the equation x2 = a.
If we care about the connection to the integers then 1

4 is a good name. For
example 1

4 + 7
28 + 197

23 is a name for a number. It has a fraction name and we
would want this if we care about the connection to the integers. If we do not
care about this connection then it would be easier to use decimal names.

5.1.3.2 School Presentation

The “solution of an equation” description is a fast and easy approach for people
familiar with equations. However integer fractions are treated in schools long
before “equations” are introduced. This may mean the approach is unsuitable
for use in schools, but here is a possibility:

For Students

Fractions are defined by a property rather than directly. The special property
of a

b is “times b gives a”. For example the defining property of 2
3 is “times 3

gives 2” or 3× 2
3 = 2.
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Example Problem: Express 12
3 as an integer. Solution: To get rid of the 3

denominator we have to find a multiplication by 3. Divide 12 by 3 to find
12 = 3× 4, then

12
3

=
3× 4

3
= 3× 4

3
= 4

Example Problem: Express 17
3 as an integer plus a proper fraction (numerator

smaller than denominator). Solution: To get rid of the 3 denominator we have
to find a multiplication by 3. As above we divide 17 by 3 but now we get a
remainder: 17 = 3× 5 + 2. This gives

17
3

=
3× 5 + 2

3
= 3× 5

3
+

2
3

= 5 +
2
3

End, For Students

5.1.4 Inverses

If the equation bx = 1 has a solution inside R then it is called the inverse and
written b−1.

For example, every nonzero real or rational number has an inverse in the
same ring. Examples and significance of inverses is discussed after the following
problem.

Sample Problem: Fractions and Inverses: Show that if b has an inverse then
a
b = a b−1.

To illustrate what “show” means we give the solution.
Solution, Long form:

1. The hypothesis is that b has an inverse, which unpacks to: there is b−1

with b−1b = 1.

2. The conclusion unpacks to: φ = a b−1 is a solution for the equation bφ = a.

3. We check to see if the unpacked version of the conclusion is true for φ =
b−1: b(a b−1) = (bb−1)a = (1)a = a. The information in (1) is used in the
middle step. Since the unpacked version of the conclusion is true so is the
packed version, and we are finished2.

“Unpacking” is described below. Note the arithmetic in the last step is business
as usual, even though it is going on in some unspecified commutative ring. We
do not spell out the axioms needed to justify it. Also, the first two steps are
routine unpackings that we know in advance that we will have to do. They
require a bit of care but no real thought. After that the core step (3) is easy.

Solution, Short form: According to the definition of ab we need to show b(a b−1) =
a. But this is immediate from the definition of the inverse and standard rules
of arithmetic.

2There is actually something still missing, see Problem 5.1.9.1.
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5.1.4.1 Style in Short–Form Proofs

Students should carefully compare the long and short forms of the proof above.
The long form is the “official” version while the short form is a compressed
version that can be routinely expanded to get the long form. However short–
form proofs are acceptable only if they really can be expanded. This means style
is important in short–form proofs: minor errors in calculation or use of words
may cause doubt that the person who wrote the proof really could have written
a valid long–form proof. Students who have trouble with style in short–form
proofs should practice writing out long forms and then compress them. After
some practice they should be able to write directly in the short form.

5.1.5 Unpacking Definitions

“Unpacking” is the use of definitions to translate statements to more primitive
forms that can be worked with directly. Eventually the objects become famil-
iar enough that they can be worked with directly and unpacking is no longer
necessary, but until then we unpack.

For example a fraction a
b is defined indirectly as a solution to an equation.

Statements about fractions are unpacked by clearing denominators to remove
the indirection, see steps (1) and (2) in the long–form solution above. This
unpacking will be appropriate until after the exercises in §5.1.9.3, at which
point it should be too routine to need explicit mention and can be “left to the
reader”.

5.1.6 More about Inverses

5.1.6.1 Significance

Inverses may or may not make fractions uninteresting.

• There is not much point to decimal fractions like 4.209
22.8888 because we can

compute inverses (carry out the division).

• Exact real fractions like 1
π are useful because they retain a connection to

the meaning of the number.

• The polynomial (1−x) has inverse
∑∞
i=0 x

i in the formal power series ring.
(Check to see that the product really is 1.) The fraction 1

1−x is usually
more useful than the inverse. It defines an easily–computed function of x
for x 6= 1, while the series form defines a function only for |x| < 1 and it
is not easy to compute or work with.

5.1.6.2 Problem: Inverses in Standard Rings

• Determine which numbers have inverses in the integers mod n.

• Show that a real–coefficient polynomial has an inverse in the ring of poly-
nomials if and only if it is constant and nonzero.
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• (Hard) Show that a formal power series has an inverse in the formal power
series ring if and only if it has nonzero constant term. This extends the
example given in the previous section.

5.1.7 Difficulties with the Preliminary Version

We return to the definition of fractions. The preliminary version given above
has problems:

• We need to know there is a solution somewhere. It is usually not in the
original context.

• We need to know there is at most one solution.

These are very different problems. It turns out that because the name maintains
a connection to R we can almost ignore the existence problem. It does have to
be addressed eventually, see §5.1.10.

If there is more than one solution then it it is hard to make sense of a
b as a

single thing. This has to be addressed immediately and we do that next.

5.1.8 Zero divisors

An element b in the ring is called a zero divisor if there is a r 6= 0 in R with
rb = 0.

5.1.8.1 Problem: Zero Divisors

• Show that if b is a zero divisor then there is an element a so bφ = a has
more than one solution.

• Show conversely that if there is a with more than one solution then b is a
zero divisor.

• Show that bc is not a zero divisor if and only if neither b nor c is a zero
divisor. Hint: unpack using the conclusions just above.

The first two points imply that “non-zero-divisor” is exactly what we need for
a fraction to make sense.

5.1.9 Final version of the Definition

If b is not a zero divisor then a
b is a name for the solution of the equation bφ = a.

If b is a zero divisor then a
b not defined.

Fractions with denominator a zero divisor, for example 3
0 , are undefined

(mathematically illegal expressions) because they genuinely don’t make sense.
Trying to use them leads quickly to errors. For instance the definition requires
that 3

0 = 4
0 , but this is a problem because 3 6= 4.

One can force division by zero to make sense, by use of an equivalence re-
lation. Something like this is done in a slightly different context in the section
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on Grothendieck groups, §5.1.12. When applied to fractions the result is disap-
pointing, see the third problem in §5.1.12.7. This gives another explanation of
why we are stuck with the don’t-divide-by-zero rule.

5.1.9.1 Problem: Fractions and Zero Divisors

We now see that the proof in §5.1.4 is incomplete: in order to be sure the fraction
a
b makes sense we must verify that if an element has an inverse then it is not
a zero divisor. Rewrite both the long and short forms of the proof in §5.1.4 to
include this.

5.1.9.2 Problem: Zero Divisors in Standard Rings

1. Show for examples (1), (3), (4), (5) in §5.1.2 that the only zero divisor is
0.

2. Find an explicit form of the zero–divisor condition in the second example
in terms of the modulus n. Compare this with the invertibility condition
in §5.1.6.2.

3. Laurent polynomials allow finitely many negative and positive exponents.
Series allow infinitely many positive exponents. A natural generalization
is series that are infinite in both positive and negative directions. However
these rings are tricky to work with because they have a lot of zero divisors.
As an example show that (1− x)

∑∞
i=−∞ xi = 0. Generalize this: if r is a

nonzero real number find a bi–infinite series whose product with (r − x)
is zero.

5.1.9.3 Problem: Standard Fraction Facts

Here the standard fraction facts are shown to hold for fractions in any commu-
tative ring.

1. Find a fraction expression for the sum a
b + x

y (be sure to check the zero–
divisor condition for the answer. Note that there is an implicit hypothesis
that the fractions make sense: b and y are not zero divisors. Use this and
Problem 5.1.8.1)

2. Find a fraction expression for the product a
b
x
y .

3. Find a fraction expression for the fraction a/b
x/y . What is the condition

required for this to make sense? (i.e. when is x
y not a zero divisor?)

4. Show that if c is not a zero divisor then ca
cb = a

b .

Since the rules are the same, people who can work accurately with integer
fractions should also work with general fractions without explicitly referring to
either rules or the definition.
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5.1.10 Rings of fractions

We return to the existence problem mentioned in §5.1.7: if b is not a zero divisor
in R then 1

b seems to make sense, but it is not an element of R unless b has an
inverse. What, or where, is it? In fact we use fractions to define a new ring.

5.1.10.1 Definition

The ring of fractions of a commutative ring R, denoted here by Frax(R), is the
set of a

b with b not a zero divisor, with two such being equivalent if they solve
the same equation bφ = a.

Equivalence means, for instance, that a
b and ac

bc are considered the same
object even though they are different symbolic expressions.

The addition and multiplication formulas 5.1.9.3 are now no longer identities
for preexisting objects but actually used to define addition and multiplication in
the ring of fractions. Strictly speaking one should verify that these operations
satisfy the rules required in a commutative ring. We will not do this because
they follow easily and routinely from the rules in R.

5.1.10.2 Examples

We can now recognize some standard systems as being rings of fractions.

• The rational numbers are the ring of fractions of the integers.

• The rational functions3 are the ring of fractions of the real polynomial
ring.

5.1.10.3 Problem: Fractions and Zero Divisors

• Show that a
b is a zero divisor in the ring of fractions if and only if a is a

zero divisor in the original ring.

• Show that every element in the ring of fractions that is not a zero divisor
has an inverse.

• Show (conversely) that if every non-zero-divisor in R has an inverse, then
the natural inclusion R ⊂ Frax(R) is a bijection.

• Describe the ring of fractions of the integers mod n (see §5.1.9.2).

The natural inclusion in the third problem is defined by a 7→ a
1 . “Bijection”

means that every element in Frax(R) comes from exactly one element in R.

3“Rational functions” really should be called “polynomial fractions”. They are very useful
as functions, but identifying them as elements in a ring of fractions is more fundamental.
Note that the formal power series ring §5.1.2 Example (5) also has a ring of fractions but
these generally cannot be interpreted as functions.
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5.1.11 Ring Homomorphisms

To explore the relationship between rings and their rings of fractions we need
a definition. A function f : R → S between two rings is said to be a ring
homomorphism if it preserves the multiplication and addition operations and
their units:

• f(a+ b) = f(a) + f(b)

• f(ab) = f(a)f(b), and

• f(0) = 0, f(1) = 1.

5.1.11.1 Examples of Ring Homomorphisms

Many of the standard relationships between the examples of rings in §5.1.2, for
instance mod–n reduction going from the integers to the integers mod n, are
ring homomorphisms. We add a few more:

• Fix a real number r. Show that evaluation at r defines a ring homomor-
phism from the polynomial ring to the real numbers.

• Show that the inclusion R ⊂ Frax(R) of a commutative ring into its ring
of fractions, defined by a 7→ a

1 , is a ring homomorphism.

5.1.11.2 Naturality?

Applying a ring homomorphism f to an equation bφ = a gives f(b)f(φ) = f(a).
Interpreting these as defining equations for fractions seems to show that f pre-
serves fractions: f(ab ) = f(a)

f(b) . This should mean f induces a ring homomor-

phism on the rings of fractions: f̂ : Frax(R)→ Frax(S). However:

• Find the error in this proposed construction.

• Find a really obvious ring homomorphism between two of the examples in
§5.1.2 that does not extend to the rings of fractions.

• Fix a real number r. Determine which polynomial fractions p(x)
q(x) do not

give a real fraction (and therefore not a real number) when evaluated at
r.

5.1.12 Grothendieck Groups

Historically, fractions were first introduced as ratios, then used to encode and
work with rational numbers. It was an unexpected bonus that they gave a way to
mass–produce new rings by adjoining multiplicative inverses. The Grothendieck
construction uses the same idea in a simpler context: additive systems without
additive inverses.
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The most familiar example is the natural numbers, and the construction ad-
joins additive inverses to produce the integers. There are many other examples
but they require sophisticated preparation. This is why the additive version was
described so much later than the fraction construction.

5.1.12.1 Commutative Seimgroups

A commutative semigroup is a set with a binary operation, denoted +, that is
associative and commutative. Denote the set by N , then specifically:

• a+ b is defined for all a, b in N ;

• a+ b = b+ a; and

• a+ (b+ c) = (a+ b) + c.

There is a strong convention that an operation is entitled to be denoted “+”
only if it has these properties. This means we can do arithmetic as usual with
+ operations, and don’t have to explicitly think about the rules.

5.1.12.2 Examples

• The natural numbers with the standard addition operation. This is de-
noted by N.

• The natural numbers with operation given by minimum:

min(a, b) =

{
a if a ≤ b
b if b ≤ a

.

This is sometimes called the tropical semigroup structure4.

• If R is a commutative ring then R with the multiplication operation is a
commutative semigroup. Caution: the use of multiplicative notation when
thinking of it as a ring, and + for the same operation when thinking of it
as a semigroup, is an endless source of confusion.

• The non-zero-divisors in a ring, again with multiplication as the operation,
also form a semigroup. The third property in §5.1.8.1 is needed to see that
this is true.

5.1.12.3 Terminology

A group is a set with a binary operation with a unit element and inverses. “Semi-
group” weakens this by dropping the requirement that inverses exist. Commu-
tative means that the operation is commutative, just as with rings. Mathe-
matical experience suggests that the most fundamental object is a (possibly
non–commutative) group. This therefore gets the short name, and related ob-
jects are described by modifying the name, just as with commutative rings (see
§5.1.1.2).

4See the “tropical geometry” entry on Wikipedia.
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5.1.12.4 A Difficulty

Recall that a fraction φ = a
b is defined to be the solution to the equation bφ = a.

We would like to similarly define a difference φ = (a− b) as the solution to the
equation b+ φ = a, but there is a problem with this.

Recall that there are many solutions to the defining equation of a fraction
if the denominator is a zero divisor. The solution was to only define fractions
with non-zero-divisor denominators. The analog for addition is cancellation:
b+ a = b+ c implies that a = c. The strict analog of the fraction construction
therefore only defines differences a− b if b satisfies the cancellation condition.

We didn’t mind having a condition on denominators of fractions. We do
mind having a condition on negative objects (we want to be able to subtract
without conditions). This requires a modification of the construction: requiring
the defining equation to hold only after addition of the same term to each side5.
Adding such a term is called “stabilization”.

5.1.12.5 The Construction

Suppose N,+ is a commutative semigroup. G(N,+) is defined to be equivalence
classes of pairs of elements a, b, with equivalence classes written [a− b]:

• [a− b] is equivalent to [a′ − b′] if there is c so that a+ b′ + c = a′ + b+ c.
(Think a − b = a′ − b′, clear negative signs by adding b, b′ to each side,
then stabilize by c to avoid the cancellation problem).

• The operation + is defined on equivalence classes by [a − b] + [c − d] =
[(a+ c)− (b+ d)].

5.1.12.6 Problem: Identities in G(N,+)

• Show that + is well–defined: if [a− b] ' [a′ − b′] then ([a− b] + [c− d] '
[a′ − b′] + [c′ − d′].

• Show that [a− a] ' [b− b] for all a, b, and that this equivalence class is a
unit for the operation: [a − b] + [c − c] ' [a − b]. We follow tradition by
denoting the equivalence class [a− a] by 0.

• Show that [b− a] is an additive inverse for [b− a].

The outcome is that G(N,+) is a commutative group (i.e. commutative semi-
group with inverses). The construction adjoins inverses.

5The analogous modification of the fraction construction is to allow multiplication by an
arbitrary element. The effect is to enable division by anything, including zero divisors if there
are any. The next-to-last example in §5.1.12.7 illustrates what happens.
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5.1.12.7 Problem: Examples

• Show that the function [a− b] 7→ a− b defines an isomorphism6 from the
Grothendieck group of the natural numbers with standard addition, to the
integers.

• Describe the Grothendieck group of natural numbers with the tropical
(min) operation.

• Suppose R is a commutative ring. Show that the Grothendieck group
of R, with multiplication as the operation, is trivial (everything equal to
the identity element). This semigroup is an example in §5.1.12.2 where
there is a warning about notation problems with the operation. The best
way to proceed is to translate the definition of G(R,×) into multiplicative
notation, and see it as a modification of the definition of fractions.

• Describe the Grothendieck group of the nonzero integers, with multipli-
cation as operation.

Generalize the example just above to show:

5.1.12.8 Proposition

Suppose R is a commutative ring. Then the group of invertible elements in the
ring of fractions of R is the Grothendieck group of the semigroup of non-zero-
divisors of R.

After unwinding the definitions you should see this as essentially obvious.
The impressive–sounding statement is the result of having two terminologies for
essentially the same construction.

5.2 Area

The object is to explore a formula for areas of polygonal figures in the plane,
using coordinates of the vertices.

5.2.1 Polygonal closed paths

Suppose (p0, p1, . . . , pn) are points in the plane R2. The oriented closed path
with these as vertices is obtained by joining pi to pi+1 for 0 ≤ i ≤ n where, if
i = n, we set pn+1 = p0.

Closed means it goes back to the starting point: this is the effect of the
pn+1 = p0 convention. Oriented refers to the preferred direction on the path

6“Isomorphism” here means one-to-one and onto, and takes + in one group to + in the
other.
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coming from the order of the vertices. Problem: Draw7 a few of these by choos-
ing points at random, numbering them, and then connecting them, drawing
arrows to indicate direction on the edges. Do one with only two vertices.

5.2.2 The Project

Suppose P is an oriented closed path with vertices p0, . . . pn. Denote the coor-
dinates by pi = (xi, yi) and define

A(P ) =
1
2

n∑
i=0

(xiyi+1 − xi+1yi). (5.1)

The project is to show that if P is a closed polygonal path then A(P ) is the
area enclosed by P . More precisely, find conditions under which this is true.

5.2.2.1 Problem: Example

If this works then it makes areas easy to compute when coordinates of the
vertices are known. Find A(P (t)) for quadrilaterals P (t) = ((0, 0), (1, t2), (1 −
t, 1− t), (t2, 1)) when −1 ≤ t ≤ 1. Draw a few of these to see what is happening
in this family. Determine the t at which A(P (t)) attains it’s maximum.

5.2.2.2 Notes

• This may seem unlikely: how can something that only uses the path give
the area? Also, the definition of “path” allows self–intersections so does
“enclosed” even make sense? Or is it just for simple closed paths?

• The statement can’t be right even for simple closed curves: areas should
be nonnegative, but A(P ) can be negative: reversing the order of the
vertices in P reverses the sign of A(P ). This has to be sorted out.

• It is useful to observe that A is defined for curves that aren’t closed. In
fact it is defined for a single edge, and

A(P ) =
∑

ei edges of P

A(ei) (5.2)

5.2.2.3 Problem: Test Cases

To clarify what is going on, try some special cases (with pictures!). Compute
both A and the area.

• A triangle8 with p0 at the origin and p1 on the positive x axis. This has
vertices ((0, 0), (x1, 0), (x2, y2)) with x1 > 0. Note there are several cases
depending on whether (x2, y2) is above, on, or below the x axis.

7Draw on paper, with a pen or pencil. There is something about actual drawing that
significantly aids learning, and students really are expected to do this.

8Do this symbolically. Do not put numbers in for x1, etc.
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• A trapezoid (4 vertices) with p0, p1 as above and the segment from p2 to
p3 horizontal.

You should see there is a sign problem: the definition needed to get the sign
right is counterclockwise orientation of the boundary. Essentially it means that
if you imagine yourself moving along the boundary in the direction specified by
the orientation then the “inside” of the region is on your left9.

5.2.3 A Difficulty, and a Strategy

Area is not defined in school mathematics. Students are taught formulas for
areas of simple figures, but these are obtained from basic examples (especially
rectangles) and justified heuristically. Without a definition, or at least a rea-
sonably general way to compute, there is almost nothing to connect with. How
can we expect to relate A to area under these circumstances?

In fact we see that this is a problem in the usual development of mathematics.
The first real definition of area is given in multivariable calculus: the area of a
region is the double integral of the function 1 over the region. This definition
makes many calculations easy, and gives the formula A(P ) via Stoke’s theorem.
This is connected with earlier work by showing it gives the familiar answers for
triangles, circles, etc. It is not shown to agree with an earlier definition of area
because, of course, there wasn’t one. In essence, earlier work becomes obsolete
and is discarded.

Our objective is still to connect A to area, and to do this without go-
ing through calculus. The plan is to list properties that area—however it is
defined—should have. We then verify that the function A has these proper-
ties. If the properties are strong enough to completely determine the area of a
polygonal region it will follow that A must be area.

5.2.3.1 Properties of Area

Area of polygonal regions should satisfy:

Invariance under rigid motions Rotation and translation do not change area;

Additivity if a region is split into two pieces then the total area is the sum of
the areas of the pieces; and

Standard triangles areas of triangles with one edge on the x axis is one-half
(length of base) times (height).

A list like this is always a bit dangerous: we are working blind, and we might
assume more than is actually true. In that case deductions made from the
assumed properties will lead to a contradiction and the whole effort will col-
lapse. To minimize risk we try to get the job done with the weakest possible
assumptions.

Eventually, by using A, we will see that area has many additional properties
that we would not dare to assume when working blind.

9This is imprecise but good enough for the present. See §5.2.6 for a precise version.
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5.2.3.2 Rough Argument for Sufficiency

We suggest why these properties should be enough to determine the area of
a region. It should be possible to divide a polygonal region into triangles.
Using additivity the whole area is the sum of the areas of these triangles, so we
only have to show that areas of triangles are determined. Any triangle can be
translated so one vertex is at the origin, and then rotated so another vertex (and
therefore an edge) is on the x axis. Since area is unchanged by rigid motions,
the area of general triangles is determined by areas of these special cases. But
areas in these cases is specified in the standard–triangle property.

This argument is not solid. The part about determining area of general
triangles is OK (i.e. essentially a proof), but subdivision of regions into triangles
needs to be done carefully. There might be a subtle difficulty with this that
could require restriction to special polygonal regions, for instance convex ones.
However the proper next step is to see if A has the properties. The reason is
that if this fails then we can conclude that A does not give areas, or the whole
approach has to be modified, and we don’t have to worry about the subdivision
argument. If A passes then we can return to the subdivision argument.

5.2.4 Properties of A

Terminology used in the problems is explained in the following section. After
that we compare with to determine exactly what remains to be done to complete
the project.

5.2.4.1 Problem: Properties of A

Suppose P is a polygonal region with vertices pi for i = 0, . . . , n, and pn+1 = p0.
Prove the following:

Translation Invariance If q is any point in the plane then the region P + q
with vertices p0 + q, p1 + q, . . . satisfies A(P ) = A(P + q).

Matrix Transformations If R is a 2×2 matrix then A(RP ) = det(R)A(P ).
See Notes below.

Additivity Suppose Q is a polygonal path beginning and ending at vertices of
P , see Notes below. Denote the two regions obtained by splitting P along
Q by PQ1 and PQ2. Then A(PQ1) +A(PQ2) = A(P ).

Subdivision Suppose q is a point on the edge between pi and p[+i+ 1. Denote
by Pq the region defined by inserting q in the vertex list between pi and
p[+i+ 1. Then A(P ) = A(Pq).

Cyclic Permutation The region obtained by cyclically permuting the ver-
tices, i.e. (pi, . . . , pn, p0, p1, . . . , pi−1), has the same A value.
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5.2.4.2 Notes

• In Rotation Invariance, a 2× 2 matrix operates on points in the plane by(
a b
c d

)
(x, y) = (ax + by, cx + dy). In particular, rotations do not change

A because they have determinant 1. There are matrices like the shear
transformations

(
1 r
0 1

)
that are not rotations but have determinant 1 and

so also don’t change A. When we know that A is area it will follow that
area is not changed by these either.

• In Additivity, Q is of the form (pi, q1, . . . , qk, pj). Suppose i < j. Then the
split regions are (pi, . . . , pj , qk, . . . , q1) and (pj , . . . , pn, p0, . . . , pi, q1, . . . , qk).
What happens if j < i or j = i? Hint: use the edge–sum description in
equation (5.2).

• There are two points to the Subdivision and Cyclic Permutation proper-
ties. First, A is defined using a specific ordering of specific vertices. These
properties show that A depends on the underlying geometric figure (and
the direction on the boundary), not specific vertices. These properties will
also be needed to divide regions into triangles.

5.2.4.3 Taking Stock

The function A has all the properties we could want, and more: additivity works
even if the cutting curve intersects original, or if it lies outside the original region.
This strange behavior has something to do with it being able to take negative
values. In any case the precise relation to area is still unclear.

Referring back to the discussion in §5.2.3.2, we see that all the pieces are
in place except for the argument about cutting a region up into triangles. In
particular A is now known to give area of positively oriented triangles. Evidently
the cutting argument is where the negative–value and crossing problems get
sorted out. This means a logically complete version of the argument will have
to be fairly complicated.

Draw some pictures to explore what can go wrong. The curve could be a
wild scribble, or have lots of sharp points, or wind back and fourth like a maze
puzzle, or all of these. It is hard to imagine a cutting strategy that would do a
good thing in all these cases.

Instead of trying to find a strategy for cutting a region into smaller pieces
we make it bigger. It is relatively easy to prove the result for convex polygons.
The general simple closed case can be done by filling in concave areas until it
becomes convex.

5.2.5 Orientations and Convex Polygons

We develop ideas that lead to definitions of both convexity and orientation.
These are used to prove that A gives the area of the region enclosed by a
positively oriented simple (i.e. no self–intersections) polygon. The actual result
is weaker than it sounds because we don’t have a good definition for “region
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enclosed”. Eventually this will be provided by winding numbers but here we
use a more elementary, and much more cumbersome, approach.

The standard definition of a convex region is that if two points are in the
region then the straight line between them is also in the region. Here we would
want to apply this to the region enclosed by the curve. However we can’t do
that because—again—we don’t have a criterion for which points are inside and
which are outside. Again we use an approach special to the situation.

5.2.5.1 Extremal Vertices and Edges

Suppose P is a closed polygonal path. A vertex is called extremal if there is a
bi–infinite straight line that intersects the polygon in exactly this vertex. A line
is called an extremal line if it intersects the polygon in at least two points and
there are no vertices on one side of the line.

For example suppose yi is the smallest y coordinate of any vertex. The
horizontal line (t, yi) for t ∈ R passes through the vertex pi and there are no
vertices below this line. If pi is the only vertex on the line then pi is an extremal
vertex. If there are other vertices on the line then this is an extremal line.

The outermost vertices on an extremal line are extremal vertices. For in-
stance take the lowest vertex. Rotate the line about this vertex toward the side
with no vertices. This moves the line away from the later vertices, but does
not immediately introduce new intersections. The slightly rotated line therefore
identifies the vertex as extremal.

5.2.5.2 Problem: Example

Draw a complicated, jagged, closed polygon. Locate the extremal vertices and
draw the extremal lines with a ruler.

5.2.5.3 The Convex Hull

A new polygon can be constructed from the extremal vertices by ordering them
so adjacent ones lie on an extremal line. This is called the convex hull of the
polygon, and is the smallest convex set containing the polygon. There are two
orderings that do this (up to cyclic permutation) and we want to specify one as
being “positive”.

Obtain particular extremal lines by translating and rotating the x axis so
that the polygon lies in the translated upper half plane (nonnegative y coor-
dinates). Each such extremal line contains two extremal vertices: the ones
corresponding to minimal and maximal x coordinate. Order the vertices by
placing the one with maximal x coordinate just after the minimal one. Then
this is the positive (or counterclockwise) orientation of the convex hull.

Referring back to the test cases in §5.2.2.3, we see that all the vertices on
the triangles and quadrilaterals there are extremal. The positively oriented
examples are the ones with nonnegative y coordinates, while the others are
negatively oriented (opposite of positive). Note that this definition of orientation
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exactly determines the sign of A for these examples. In particular if P is a
positively oriented triangle then A(P ) is the area of P .

5.2.5.4 Problem: Areas of Convex Polygons

Define a polygon to be convex if all vertices are extremal. Show that if P is a
positively oriented convex closed polygon then A(P ) is the area of the region
enclosed by P .

To do this choose a vertex (say p0) and consider the triangles (p0, pi, pi+1).
Show that each of these is positively oriented and their union is P . Then use
additivity.

5.2.6 Simple Closed Polygons

A closed polygon is called simple if no edge intersects another edge or vertex
except at it’s endpoints.

We can define “positive orientation” for simple polygons: suppose ei and
ei+1 are adjacent extremal vertices, ordered using the positive orientation of
the convex hull. Denote the line through these points by E. P splits into two
polygonal paths from ei to ei+1, both contained in the half–plane on one side
of E. Since there are no self–intersections in P one of these is contained inside
the region bounded by the other and E. We define P to be positively oriented
if ei is before ei+1 in the ordering on the inner path.

We postpone the argument that there really is an “inner” and “outer” path.
It is also true that the inner path cannot contain any other extremal vertices (a
line through a vertex has to intersect the outer curve). If P is positively oriented
then this implies the ordering on the vertices of P gives the natural positive order
on the extremal vertices, and this in turn implies that the definition of positive
does not depend on which pair of extremal vertices are used. All these things
can be proved with the techniques at hand, but somewhat awkwardly. A short
clear proof will be possible after winding numbers are developed.

5.2.6.1 Proposition: Areas of Simple Polygons

Show that if P is a simple closed polygon then the area of P is (−1)kA(P ),
where k = 0 if P is positively oriented, k = 1 otherwise.

It is sufficient to show that A(P ) is the area if P is positively oriented,
because reversing orientation changes the sign of A.

Proceed by induction on the number of vertices of P , starting with triangles
(n = 3). The induction step is: suppose the proposition is true for all simple
polygons with fewer than n vertices, and suppose P has exactly n. Then show
that the proposition is also true for P . Note that if P is not convex then there
are adjacent extremal vertices ei and ei+1 so that the edge between them is not
a union of edges of P . There is a path in P between these vertices that does not
contain any other extremal edges. Define Q by replacing this path in P with
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the direct edge between ei and ei+1. Observe that Q has fewer vertices than P ,
and argue that P is obtained from Q by cutting along the replaced path.

5.2.7 Winding Numbers

Winding numbers count how many times a curve in the plane “goes around”
various points. Winding numbers are the starting point for remarkable devel-
opments in analysis, topology and other areas, and provide a complete under-
standing of how A relates to area.

The rough idea is that a general polygonal curve (with intersections) does,
in a sense, enclose a region. But this region can overlap itself, and—due
to folding—can have pieces with negative orientation and therefore negative
“area”. The function A gives the area when counted with multiplicity of over-
laps, and winding numbers give the multiplicity. The formal statement is given
in §5.2.7.5, but properties of winding numbers must be developed first.

5.2.7.1 Definition

Suppose P is a polygonal path, a is a point not on P , and R is a ray beginning
at a that does not pass through any of the vertices of P . The winding number
of P around a is the number of intersection points of R with edges of P , counted
with signs.

Signs are assigned to intersection points as follows. Represent the ray as
obtained from the positive x axis by translation and rotation. The translation
and rotation act on the whole plane, and we can define the positive side of
the ray to be the image of the upper half plane. Next recall that edges have a
preferred direction coming from the order on the vertices. Define an intersection
point to have sign +1 if the edge direction goes from the negative to the positive
side of the ray. Sign −1 corresponds to a positive-to-negative crossing.

Note there is an intersection associated with each crossing edge. It might
be that multiple edges cross at the same point on R, in which case this point is
counted multiple times.

5.2.7.2 Problem: Draw an Example

Let R be the positive x axis, thought of as a ray beginning at 0. Draw a
complicated closed curve that winds around 0 but with occasional changes in
direction so some crossings of R are positive and others are negative. Then
trace along the curve in the preferred direction and record the direction at each
crossing point with an arrow. Add to determine the winding number.

5.2.7.3 Problem: Winding Numbers are Well–Defined

Show:

1. Any ray starting at a and missing the vertices of P gives the same winding
number.
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2. If a and b are joined by a polygonal path disjoint from P then P has the
same winding numbers around a and b.

These are consequences of:

Lemma: suppose R(t) is a 1–parameter family of rays with origins disjoint from
P . Then R(0) and R(1) give the same winding number.

In part (1) of the problem, a 1–parameter family can be obtained by rotating
about the point a. In part (2), start with a ray at a and use translations to
move the whole ray so that the endpoint moves along the path. Caution: the
statements in the problem are a bit imprecise. Be very precise about what these
arguments actually prove, and show how they fit together to give the conclusion.

To prove the lemma, assume that there are only finitely many values of t for
which R(t) contains vertices of P . For a random 1–parameter family this may
not be true. It is true for the families actually used (rotations and translations)
and can be arranged without much difficulty in general, but there is not much
benefit to going into detail here. Then:

• Argue that on an interval of t values that does not contain a vertex inter-
section, the number doesn’t change. This should be easy.

• Argue that the number also doesn’t change when the parameter passes
through a value with vertex intersections. Do this with pictures of the
various ways edges can enter and exit a vertex, and how a ray could
sweep through the picture. Don’t get too formal, but be sure you have all
possibilities represented. Caution: the ray could contain an edge of P !

5.2.7.4 The Polygonal Jordan Curve Theorem

The polygonal path property in part (2) of the problem above inspires the
following definition: A region is said to be connected if any two points can be
joined by a polygonal path. When applied to complementary regions this means
a path disjoint from the original curve.

Problem. Show that a simple closed polygonal curve divides the plane into
exactly two connected regions:

• a (unbounded) region in which the winding number is 0; and

• a region in which the winding number is 1 if P is positively oriented, −1
otherwise.

To prove this construct polygonal paths by going along a ray to the first in-
tersection point with P , then following along beside P to an intersection point
with another ray. Evaluate the winding number by starting near an extremal
vertex.

The general Jordan Curve Theorem asserts that a continuous simple closed
curve divides the plane into two connected regions. The proof for continuous
curves is much more difficult than the polygonal case.
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5.2.7.5 Theorem

A closed polygonal curve P divides the plane into a finite number of connected
subregions. A(P ) is the sum over these, of the area of the subregion times the
winding number of P around a point in the subregion.

According to part (2) of Problem 5.2.7.3, the winding number is constant on
a connected region, so it doesn’t matter which point in the subregion is used.

To organize the proof, introduce the notation W (P ) for the weighted area
sum.

• Both A(P ) and W (P ) are defined for collections of closed curves, not just
single closed curves. We use this in a cutting argument that splits curves
into pieces. (Another approach is given in §??).

• Both are additive with respect to cutting and unions of multiple curves.

• By quoting previous results we can conclude that they are the same for
simple closed P .

There are several ways to complete the proof from this point. One approach is
by induction on the number of complementary regions, for a single closed curve.
The induction starts with two complementary regions (the simple closed case)
because we know A and W agree for these.

For the induction step suppose the statement is known for n or fewer regions,
and suppose P has n+1. Consider a segment of P between two self–intersection
points. Cut along this segment to convert P into two closed curves. Together
these have the same complementary regions as P (because the segment is in P ),
and winding numbers for the union are the same as for P . Therefore neither A
nor W is changed by this. However we now have two pieces which must both
be “smaller” than P , so the induction hypothesis applies to both pieces.

This needs refinement. If P traces over itself several times then the cutting
procedure can give pieces with the same complementary regions. To fix this
we need something more subtle than a simple count of regions. Try using a
weighted count: the sum of the absolute values of the winding numbers. If that
doesn’t work try inducting on the number of self–intersections. However beware
that it may trace over itself somewhere, so have segments of self–intersection
and not just isolated points.

5.3 More About Area

This section gives explorations and elaborations.

5.3.1 Area and Rings

In this section and the next we try to get more elaborate versions of area by
using the same formula in different rings. One works, one doesn’t.
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5.3.1.1 Complex Area?

Think of the plane R2 as complex numbers, with p = (x, y) thought of as
p = x+ iy.

Now suppose pk = xk+ iyk are vertices in a polyhedral path. The cross term
xkyk+1 − xk+1yk in the definition of A(P ) is very nearly the imaginary part of
the complex product pkpk+1. To get the sign on the second term right, recall
that complex conjugation is defined by x+ iy = x−iy. Then xkyk+1−xk+1yk =
Im(pkpk+1). Define

Acx(P ) =
n∑
k=0

pkpk+1,

then the previous definition is the imaginary part, A(P ) = Im(Acx(P )).

Problem Show that the real part of Acx(P ) is not invariant under some area-
preserving transformations (i.e find one). Consequently Acx does not qualify as
a generalized area.

5.3.1.2 Polygons in Motion?

Suppose we have a one–parameter family of polygonal curves P (t) = (p0(t), . . . , pn(t))
defined for t in an interval (a, b). The objective is to apply the formula defin-
ing A to both coordinates and derivatives of coordinates, to see if this encodes
something useful. The first step is to construct a ring where the invariant will
be defined.

The ring R[δ]/(δ2 = 0) Extend the real numbers by adjoining δ with δ2 = 0
rather than i2 = −1 as in the complex numbers10. More precisely, the multipli-
cation in this ring is given by

(a+ δb)(x+ δy) = ax+ δ(ay + bx).

Denote this ring by R[δ]/(δ2 = 0).

Problem: Zero Divisors Find the zero divisors (see §5.1.8) in R[δ]/(δ2 = 0). We
know there is one because we put it there (delta2 = 0).

Encoding Derivatives Suppose f(t) is a real–valued function defined and dif-
ferentiable on an interval (a, b). Define fδ : (a, b) → R[δ]/(δ2 = 0) by fδ(t) =
f(t) + δDf(t), where Df denotes the derivative.

Problem: Products. Show that if f, g are both defined and differentiable on (a, b)
then (f × g)δ = fδ × gδ.

Clarification of notation: (f×g)δ is the δ construction applied to the ordinary
product of real–valued functions. fδ×gδ is the product in the ring R[δ]/(δ2 = 0).
Multiplication is written explicitly (i.e f × g rather than fg) to avoid confusion
with composition of functions. Unpack carefully.

10The complex number i is sometimes written
√
−1. Could the “number” δ be written

√
0?
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Definition of Aδ. Now suppose P (t) = (p0(t), . . . , pn(t)) is a family of polygons
defined for t in (a, b), and suppose that all the coordinate functions are differ-
entiable. Define Aδ(P ) by using the formula (5.1) used to define A, but in the
ring R[δ]/(δ2 = 0) using the extended coordinate functions xδi (t), y

δ
i (t).

Problem: Example. Find Aδ(P ) (as a function of t) for the example in §5.2.2.1.
As an intermediate step write out the extended polygon P δ(t).

Problem: Describe Aδ. Show that if P (t) is a differentiable one–parameter
family of polygons then

Aδ(P )(t) = A(P (t)) + δD(A(P ))(t).

In words, this means that when we work in the ring R[δ]/(δ2 = 0) the formula
for A gives the derivative of the area as well as the area itself.

5.3.2 Area and Vectors

Here we shift point of view and express a polygonal path as a pair of vectors.
See §?? for an account of where this came from.

Instead of thinking of a sequence of pairs of numbers (x1, y1), . . . we could
think of it first as a n× 2 matrix

x1 y1
x2 y2
...

...
xn yn


and then as two vectors X = (x1, x2, . . . ) and Y = (y1, y2, . . . ) of the same
length. These should be thought of as column vectors (n × 1 matrices) but to
save space they are usually written as rows.

5.3.2.1 A as a Product

Separate the two terms in the definition of A, 5.1, shift the index of one, recom-
bine and factor out the x term:

1/2
∑n
i=0(xiyi+1 − xi+1yi) = 1/2(

∑n
i=0 xiyi+1 −

∑n
i=0 xi+1yi)

= 1/2(
∑n
i=0 xiyi+1 −

∑n
i=0 xiyi−1)

= 1/2
∑n
i=0(xi(yi+1 − yi−1)

The last expression is a dot product of the vector X and something obtained
by shifting the coordinates of Y . To express this last we need a notation.

Define the Right Rotation of a vector byR(y1, y2, . . . , yn) = (yn, y1, y2, . . . , yn−1).
This is represented by multiplication by the n×n matrix with 1s just below the
diagonal, a 1 in the upper right corner, and all other entries 0. We therefore
usually write the function as a matrix product (indicated by a dot), R ·Y . Again
note Y is considered as an n× 1 matrix.
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Problem Show that the left rotation R−1 is the transpose Rt.

We can therefore write the vector with ith coordinate yi+1− yi−1 as (R−1−
R) · Y . With all this in hand we get

A(X,Y ) = Xt · (R−1 −R) · Y

where A(X,Y ) denotes (no surprise) the function A applied to the polygonal
path with the indicated vertices.

5.3.2.2 Caution about the Transposition of X

The X is transposed to make it a 1× n matrix so the product is defined. This
is quite important. For example if we rotate both X and Y one place to the
right then we get the same path but starting at a different vertex. The area
is unchanged and this should be visible from the formula. Begin with routine
expansion of the definitions:

A(R ·X,R · Y ) = (R ·X)t · (R−1 −R) ·R · Y
= Xt ·Rt · (R−1 −R) ·R · Y

But Rt = R−1 so the middle terms reduce to (R−1−R) and we get the expression
for A(X,Y ).

There is a caution about this argument. We have both R and R−1 in the
expression and the idea is to cancel them. However matrix multiplication usu-
ally doesn’t commute so we can’t move the R−1 past the (R−1 − R) just by
general principles. You can see that the formula works anyway by multiplying
it all out.

There is a shortcut: it is easily seen that powers of a single matrix (including
negative powers if they exist) do commute with each other. In this case only
powers of R are involved so in fact the product R−1 · (R−1−R) does commute.
Therefore in this case we can just commute the R−1 and R to be adjacent and
cancel them. It is simpler to see the identity this way, and this sort of thing will
be useful when we have to deal with bigger products.

Warning: if you use this fact you must say “because powers of a matrix
commute. . . ”. Otherwise it will look like a common error (forgetting matrix
multiplication almost never commutes) and should be counted wrong: this error
is so dangerous it must be caught every time.

The point demonstrated here is that we get cancellation because the trans-
pose on Xt changes R to R−1. It also reverses the order of the product (this
is a property of transposition and is not commuting). If we had been sloppy
and omitted the transpose then the expression would be wrong. The biggest
danger with something like this is that it is often not clear what the problem is.
If we can’t find anything interesting, is it because there is nothing interesting
to find, or because an incorrect expression can’t find it? This is less trouble
for students because they can check the answer, but it is a constant hazard for
mathematicians. See §??.
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5.3.2.3 Area–Killing Vectors

The question here is: are there “area–killing vectors” Y so that A(X,Y ) = 0
for all X?

The standard inner product Xt · Y is “nondegenerate” in the sense that
Xt · Z = 0 for all X only if Z = 0. Therefore the killer vectors are ones with
(R−1 −R) · Y = 0, or in other words with R−1 · Y = R · Y .

• Interpret this as a relationship between entries of Y .

• Show that if Y has odd length then all entries of Y are the same. If all y
coordinates of points in P are the same then they lie on a horizontal line.
It is certainly reasonable that the area should be 0 no matter what the x
coordinates.

• Argue, using invariance under rotation, that any P whose vertices lie on
a line must have zero area.

• Figure out what R−1 · Y = R · Y implies if Y has even length.

• Interpret the result in terms of horizontal lines, then get a more general
statement by rotation.

• I didn’t expect this outcome, and had to draw some pictures to feel com-
fortable with it. Do this, starting with Y of length 4.

5.3.2.4 Bilinearity, and Midpoint Polygons

An immediate consequence of the product formulation is that A(X,Y ) is linear
in both X and Y . Explicitly this means

A(r0X0 + r1X1, Y ) = r0A(X0, Y ) + r1A(X1, Y )

(real coefficients ri) and similarly for Y . If we take combinations of X0, X1 and
of Y0, Y1 we get a 4–parameter family of polygons, and a formula for their areas
in terms of the four basic ones ((X0, Y0), (X0, Y1) etc.). This is a little too
free–form to be really interesting, so we explore a classical formula where the
various polygons are closely related.

Suppose P = (X,Y ) is a polygonal path. The midpoint polygon of P has
vertices the midpoints of the edges. Explicitly, the ith vertex is 1

2 ( (xi+xi−1, yi+
yi−1) ). In vector notation this becomes 1

2 (X + R ·X,Y + R · Y ). We can also
write X +R ·X as (I +R) ·X, where I is the identity matrix.

1. Show that A of the midpoint polygon is given (up to a constant) by

Xt · (I +R−1) · (R−1 −R) · (I +R) · Y.

In particular find the constant, and justify the form of the first R term.
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2. Show that the product of the R terms in this expression is equal to

2(R−1 −R) + (R−2 −R2).

Rather than multiply it all out, commute the first and second terms (don’t
forget to write the magic words for this) and just multiply out the first
and third.

3. Interpret Xt ·(R−2−R2)·Y as A of a polygon with the same vertices as the
original, but used in a different order. (This is called the “skip” polygon.
If there are an even number of vertices it is actually two polygons.).

4. Put these together to get a formula for the area of the midpoint polygon
in terms of the areas of the original and the skip polygon.

Is the use of the midpoint (i.e. coefficients 1
2 ) really essential in this formula?

Try other combinations of the polygon and its rotation:

1. Expand A of r(X,Y ) + s(R ·X,R · Y ), and simplify as above.

2. For which values of r, s can this be expressed in terms of the areas of the
original polygon and the skip polygon, and what is the expression?

5.3.2.5 Zero–Area Skip Polygons

In §5.3.2.3 we found criteria for polygons to have zero area. We use the coordinate–
free versions, e.g. “all vertices lie on a line”.

1. Use these to find conditions on a polygon that ensure the associated skip
polygon has zero area.

2. The most interesting case is when the number of vertices is divisible by
4, though the case n = 4 is pretty trivial. Use the criterion to draw some
polygons with 8 vertices with zero–area skip polygons.

5.3.2.6 Morphing

We want to “morph” P to R(P ) without changing the area. Then the formula
at the end of §5.3.2.4 for linear combinations is

A(rP + sR(P )) = (r2 + s2)A(P ) + rsA(skipP ) (5.3)

If we want this equal to A(P ) it becomes

(r2 + s2)A+ rsAskip = A

and the question is whether we can go from (r, s) = (1, 0) to (0, 1) in the set of
(r, s) that satisfy this equation.

This breaks into two cases: A = 0 and A 6= 0.
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If A = 0 we need r = 0 or s = 0, so the solution set is the union of the
coordinate axes. We can go from (1, 0) to (0, 1) in this set, but note we have to
go through (0, 0) to do it. In other words the morph shrinks P to a point and
then expands it back out to R(P ).

Now suppose A 6= 0, and define k = Askip/A. The equation becomes:

(r2 + s2) + k rs = 1

Problem. Describe this solution set for various values of k, and in particular
find values where qualitative behavior changes:

1. For which k are there two different paths from (1, 0) to (0, 1)?

2. Is there a value for which there is no morphing path?

3. Are there any restrictions on the values of k coming from actual polygons?

The last question requires constructing examples. It is not worth spending a
whole lot of time on, so skip it if you don’t see what to do reasonably quickly.

If you have access to software that displays polygons, do the following:

1. Explicitly parameterize part of the solution set to get a morphing path
(Use polar coordinates and parameterize by the angle from the x axis).

2. Watch various examples morph and see if you can qualitatively describe
any of the behavior, e.g. in terms of k.

3. You will see that some examples move around, and that the movement
depends on location (translate to see this). The reason is that the polygons
that can be obtained by linear combination depend on position, so these
morphs go through different spaces. It would take us too far afield to
explore this but two directions might be:

• Is there a special location with a nice morph (something like “centroid
at the origin”)?

• If we enlarge the space available for morphing to something like rP +
sR(P ) + (u, v), with four free parameters, then adjusting parameters
could compensate for different positions. However the level set for
constant area is then three–dimensional. The nice thing about a one–
dimensional level set is that there is a more-or-less unique morphing
path. How could a “nice” path through the three–dimensional set be
chosen?

5.4 Derivatives

This is a first draft of a proposal to introduce derivatives early in the school
curriculum, about the same time polynomials are introduced. There are two
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5.5 Comments for Students

5.5.1 Route to a Formula

The Area and Vectors material in §5.3.2 is not deep but I stumbled on it acci-
dently and inefficiently. The story may be reassuring to students.

I heard about the midpoint polygon area formula in a lecture by Thomas
Banchoff on use of dynamic geometry software. He illustrated how students
might test and (laboriously) prove the result geometrically for convex polygons.
It seemed a good exercise for the approach here, though I have since learned
that in his course he also gave an analytic treatment similar to this one.

First I wrote out the expression (5.1) explicitly using the average description
of the midpoints. The algebra was a mess but it did work out. I also tried it
for other points on the edges: things of the form txi + (1− t)xi−1, not just the
midpoint t = 1

2 . This worked too, though it took a while to get the algebra
right.

I started looking for a better way to organize it. It requires combining x and y
coordinates in different ways, which seemed unnatural geometrically. One could
(using rotations) think of the coordinates as two orthogonal projections rather
than the standard coordinates. The complex numbers have specific orthogonal
projections built in, via complex conjugation. I thought this might be a clue
that the complex formulation in §5.3.1.1 might be a good setting. I spent a fair
amount of time trying to see something good in this, and failed. I might have
quit too soon, though, see [2].

I went back to looking for patterns in the sum expression. I had previously
noticed the reorganization and factoring used in §5.3.2.1 but hadn’t thought
anything of it because I assumed it would be a bad idea to separate the coordi-
nates (e.g. into vectors X and Y ). This time I knew separation had to be part
of the story. This freed me to recognize the expression as a dot product. It did
not take long to get the tidy description using matrix products and the rotation
matrices.

The matrix formulation showed that A defines an anti–symmetric bilinear
function (anti–symmetric means A(X,Y ) = −A(Y,X), which happens here
essentially because the orientation gets reversed). A standard question about
such things is degeneracy: how many “area–killing” Y there are, in the sense of
§5.3.2.3. Describing solutions of (R−1 −R) · Y = 0 is a linear algebra problem.

The intelligence–free approach to linear algebra is to write out the matrix
for (R−1 − R) and use row operations to reduce it to row–echelon form. I did
this. It took a while but I did it. When I got the solutions it was immediately
obvious that they could have been found much faster using the rotation argu-
ment sketched in §5.3.2.3. I was a little annoyed with myself for not having seen
the slick argument sooner (I don’t really enjoy row operations), but this kind of
thing happens all the time in research.

Next I wondered about how area changes as P is moved to R(P ) through
linear combinations. The first observation was that if the skip polygon has
zero area then going along an arc of the circle r2 + s2 = 1 (in the notation
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of §5.3.2.6) doesn’t change area. This is the case k = 0 in §5.3.2.6. I tried
to explore other cases by using an explicit parameterization with polar coordi-
nates: (r, s) = (ρ(θ) cos(θ), ρ(θ) sin(θ)). This quickly got complicated, and the
parameterizations obscured what was going on. After a while I gave this up and
developed the non–parametric version that appears in the text.

The point is that forty years experience as a research mathematician did
not prevent me from making mistakes and straying into blind alleys, even in
elementary material. The experience did, however, enable me to spot mistakes
and blind alleys fairly quickly so I could correct them, or try something different.
I believe this illustrates the best goals in learning mathematics:

• Not to never make mistakes, but to learn to watch for and recognize them,
and then to fix them.

• Not to always see what to do, especially if it is clever, but to learn to try
things and watch for clues that they could be improved or are unproductive
and should be abandoned.

5.6 Comments for Educators

These are comments for developers and instructors of courses for prospective
school teachers. They mainly concern the use of formal definitions, and associ-
ated proof strategies.

5.6.1 Formal Definitions and Unpacking

The use of formal definitions, and the unpacking–packing routine described
in §5.1.5 has been standard practice in professional mathematics for over a
century. This practice is a compromise between the way people think and the
requirements of mathematics:

• As a practical matter, people have to work more-or-less intuitively with
conceptual units.

• Mathematical success requires complete reliability.

The challenge, therefore, is to find ways to develop completely reliable intuition.
Explicitly and consciously unpacking formal definitions while developing derived
properties seems to work pretty well. In fact the effectiveness of this process
was probably a key factor in the explosive growth in scope and complexity of
mathematics in the last century

The usual routine is: when a definition is introduced, work explicitly with
it for a while, typically by deriving secondary properties. After a certain point
you should wean yourself (or your students) from the unpacking routine and
rely more on intuition and secondary properties. If the intuition is not ready,
unpack a little longer.

There are further general comments following an analysis of the projects.
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5.6.2 The Fraction Project

The structure of the first project is designed to make the definition–unpacking
routine as easy as possible when it is needed, and avoid it when this can be done
safely.

5.6.2.1 Commutative Rings

The development takes place in commutative rings. There is a formal definition
of these rings and in principle students could go through the formal definition–
unpacking routine to develop familiarity with them. However the rules of arith-
metic are essentially the same as for integers and real numbers, and students
already have fully reliable intuition for these rules. The unpacking routine is
not needed, and going through it would increase complexity without any real
benefit.

This is why the chapter opens with “There are, of course, axiomatic for-
mulations of these rules (commutative, distributive etc.) but they are already
familiar so you can work without thinking about them explicitly.” This is also
why this setting was chosen for the development.

5.6.2.2 Fractions

The definition of fractions is introduced in preliminary form in §5.1.3 and with
a subtle problem addressed in §5.1.9. The preliminary–final division is used to
call attention to the role of zero divisors, and provide an opportunity to develop
these to the point that they can be worked with intuitively before tackling the
subtle version.

The solution-of-equation definition is how fractions are defined in most texts
for teachers, see McCrory [3, 4] for a discussion. It is effective in considerably
more generality than originally intended, and as a bonus provides a way to
manufacture new rings from old (rings of fractions, §5.1.10). Benefits like this
are usually taken to mean that the definition is mathematically “right”.

This definition should be contrasted with the ones proposed for student use,
even by mathematicians. The description in Wu [7] is so diffuse it is hard to
know where it starts and ends, and even if students get an “understanding”
they certainly cannot work with it with any precision. In mathematical terms
it is a roadblock rather than a gateway.

Students should continue to unpack the definition of fraction up through the
demonstration of the standard facts in §5.1.9.3. Afterwards they should have
internalized the idea accurately enough to skip most of the unpacking in the
problems on rings of fractions, §5.1.10.1.

5.6.2.3 Inverses and Zero Divisors

These concepts are introduced for use in the development of fractions. They
are not particularly tricky, and should not be hard to internalize.
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Inverses are introduced in §5.1.4. This is not a totally new concept, but stu-
dent’s preexisting intuitions may not be sufficiently reliable so we go through the
development process anyway. We also want to illustrate the development pro-
cess itself, and previous familiarity with inverses helps with this. However after
identifying inverses in standard rings in §5.1.6.2, intuition should be developed
enough for general use.

Zero divisors are introduced in §5.1.8. They should be unpacked in Problem
5.1.9.1. Unpacking may or may not be necessary in the description of zero
divisors in standard rings, §5.1.9.2, and should be unnecessary after that.

5.6.2.4 Rings of Fractions

Fraction rings are introduced to encourage students to expand their understand-
ing of the fraction concept. The original definition is for a single fraction. Here
the focus is on the set of all fractions and the definition becomes a procedure for
producing this set. This is a change of perspective more than a new definition.

Fraction rings explain where fractions are defined. A solid answer, in other
words, to “what is a fraction?”. Unfortunately the answer is “a fraction is an
element of the set of all fractions”. Answers of this form sound—and usually
are—stupid, but here it turns out to be profound.

Sometimes changes of perspective require as much practice and unpacking
as genuinely new concepts. This will vary from student to student and can be
a difficulty when students are working in groups. Students who “get it” are
sometimes impatient with those who don’t.

5.6.2.5 Ring Homomorphisms

These are also largely a change of perspective. A full definition is given and
students should unpack it when working through the examples. After that,
however, they should realize that they have already worked with many examples
and should be able to relax about details.

One objective is to connect with something they know. Polynomial fractions,
when regarded as functions of a real variable, may not be defined at some values
of the variable. This is now seen as an instance of a general phenomenon: a
ring homomorphism (evaluation at a number) that does not take a fraction to
a fraction because the denominator becomes a zero divisor.

5.6.2.6 Grothendieck Groups

This is again a concept–broadening change of perspective. There are two novel-
ties: working with additive rather than multiplicative notation, and using brute
force to fix the zero–divisor problem.

Changing notation (here from × to +) causes serious conceptual disloca-
tion even though it is mathematically inessential. To accommodate this we
essentially repeat the development, starting with the definition of commuta-
tive semigroup. This should be unpacked while working with the examples in
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§5.1.12.2, but this should be enough to establish good contact with previous
experience.

The zero–divisor problem for fractions described in §5.1.7 is revisited in
additive notation in §5.1.12.4, and the alternative fix is described.

Students may vary widely in their need to unpack the definition of Grothendieck
group when verifying the identities and working through the examples.

The connection with fractions is nailed down firmly in the last two examples
in Problem 5.1.12.7, and Proposition 5.1.12.8, by applying the construction to
the multiplicative operation in a ring. To avoid notational confusion students
should translate the whole Grothendieck definition to multiplicative notation.
This should broaden the students’ perspective on notation and the nature of
mathematical operations as well as the fraction construction.

5.6.3 The Area Project

The main objective of the area project is to show how working without a defi-
nition makes a subject more difficult and limits what can be done. Conversely,
a definition—or even a good formula—can be quite powerful and can open up
rich and unexpected possibilities.

It may be that a definition or effective formula for area is impossible at the
school level. In that case it seems particularly important that teachers realize
that something important is missing.

• If a student has trouble understanding area it may be because the treat-
ment is defective. Teachers should be able to draw on a deeper under-
standing for explanations, not just repeat something that did not work.

• Small changes in presentation or teacher attitude may help students make
the transition to better treatments in later courses.

5.6.3.1 Generalized Areas

The discussion of complex area in §??, and “dynamic” area of parameterized
families in §?? have several objectives:

• To suggest that definitions and formulas are not fixed and static, but can
be a starting point for exploration.

• To emphasize that there is nothing disgraceful about an exploration that
is unsuccessful. It should at least shed light on what makes the successful
versions work.

• To re-enforce the idea implicit in the fraction project that flexibility about
number systems (rings) can be very useful. Here we see that rings with
special properties can be designed to test or enable extensions of a formula.
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5.6.3.2 Infinitesimals

As an aside we mention that the ring R[δ]/(δ2 = 0) used in §?? is related to
old attempts to define derivatives using infinitesimals.

Think of δ as a very small number rather than a formal symbol. The deriva-
tive f ′(t) is then approximately f(t+δ)−f(t)

δ . The formula for fδ(t) in §?? then
becomes

fδ(t) = f(t) + δf ′(t) ' f(t) + δ
f(t+ δ)− f(t)

δ
= f(t+ δ).

This is an attractive heuristic formulation but turns out to be unsatisfactory as
a definition. In particular there are severe difficulties getting a precise meaning
for “approximately”, and as a result the infinitesimal approach has some of the
same drawbacks as a heuristic definition of area.

Historically, limits (δ → 0) were discovered to provide a powerful and flex-
ible definition for the derivative. These replaced infinitesimals in professional
mathematics well over a century ago. However taking δ to 0 makes the formula
f(t) + δf ′(t) nonsense.

A way of making precise sense of infinitesimals was finally discovered by
Abraham Robinson and others in the 1960s, almost three hundred years after
Newton and Leibnitz introduced them as heuristic tools. Robinson’s work uses
a very sophisticated version of the ring R[δ]/(δ2 = 0). In principle this means
infinitesimal formulas can be used again. However the fine print needed to make
it work is so subtle and tricky that this has turned out to be impractical.

The conclusion—again—is that heuristic or intuitive formulations are unsat-
isfactory for ambitious development and calculation.

5.6.4 Cautions about Definitions and Internalization

Formal definitions are essentially never used in K–12 mathematics. Here we ad-
dress some justifications given for this, and related potential misunderstandings
with these projects.

1. Näive or innate intuitions are never sufficiently precise. We are able to
work with pre–existing intuition about arithmetic in commutative rings
in §5.1.1 because this intuition is not näive: it has been acquired through
a great deal of disciplined practice with ordinary numbers and algebra.
Problems due to K–12 use of a näive idea of area, see §5.2.3, are more
typical. By comparison with what can be done with a definition, it is
hard to compute, hard to describe in alternate ways, and many properties,
e.g. invariance under skew transformations, see §5.2.4.2, remain hidden11.

2. Internalizing properties of an object does not render the definition unnec-
essary, and being able to forget the definition is not an objective of the
internalization process. In fact a good test of successful internalization is

11A precise definition of area may be impossible in K–12, but realizing there is a problem
may open the way for a better partial treatment, see §??.
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that the student should be able to reproduce a completely precise state-
ment of the definition. This means it is always available for explicit use if
there is any doubt, and even experts have to do this from time to time.

3. Another confusion comes from the perception that experts work with de-
rived properties and intuition, not definitions. This suggests that defini-
tions, unpacking, etc. could be dispensed with, and intuition developed
directly from derived properties. Unfortunately this is not the case: reli-
able intuition is developed by deriving the properties, not from the prop-
erties themselves. Trying to skip the development process usually leads
to dysfunctional understanding that sooner or later will cause trouble, see
the comments in §5.2.3. There is no logical reason for this: it seems to
be a feature of human learning. It also seems to be particularly true for
less–capable students (i.e. they benefit most from explicit development).

4. There is a temptation to break concepts into small pieces to make them
easier to absorb. However because the pieces have to be assembled af-
ter absorption, this actually increases complexity and makes the subject
more difficult. Difficult concepts can be approached in stages, c.f. the
development of fractions, if the overall conceptual unity is kept clear.

5. Unpacking definitions is essentially routine and algorithmic. Many stu-
dents actually enjoy it once they get used to it. However full unpacking is
supposed to be a temporary expedient used during the development of re-
liable intuition, and some students have to be discouraged from continuing
when it is no longer appropriate.

5.6.5 Summary

• Formal definitions provide a repository, training ground, and anchor for
intuition.

• Reliable intuitions incorporate definitions rather than rendering them un-
necessary.

• Good definitions and accompanying development are designed to promote
development of reliable intuition.

• Good definitions frequently have unexpected benefits, see the comments
at the beginning of §5.1.12 and the end of §5.2.3.1.
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Chapter 6

K–12 Calculator Woes

January 2009, revised February 2009

Introduction

In the third grade my daughter complained that she wasn’t learning to read. She
switched schools, was classified as Learning Disabled, and with special instruc-
tion quickly caught up. The problem was that her first teacher used a visual
word–recognition approach to reading, but my daughter has a strong verbal
orientation. The method did not connect with her strongest learning channel
and her visual channel could not compensate. The LD teacher recognized this
and changed to a phonics approach.

My daughter was not alone. So many children had trouble that verbal meth-
ods are now widely used and companies make money offering phonics instruction
to students in visual programs.

The concern here is with serious learning deficits associated with calculator
use in K–12 math. Calculators may not be making contact with important
learning channels. Are they the latest analog of visual reading?

For brevity connections are presented as “deductions” (this about calculators
causes that in learning). However the deficits described are direct observations
from many hundreds of hours of one-on-one work with students in elementary
university courses1. The connections are after-the-fact speculations. If the
speculations are off–base the problems remain and need some other explanation.

6.1 Disconnect from Mathematical Structure

Calculators lead students to think in terms of algorithms rather than expres-
sions. Adding a bunch of numbers is “enter 12, press +, enter 24, press +,. . . ”
and they do not see this—either figuratively or literally—as a single expression

1At the Math Emporium at Virginia Tech, www.emporium.vt.edu.
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12 + 24 + . . . . Algorithms are much less flexible than expressions: harder to
manipulate, generalize or abstract, and structural commonalities are hidden by
implementation differences2. The algorithm mindset has to be overcome before
students can progress much beyond primitive numerical calculation.

6.2 Disconnect from Visual and Symbolic Think-
ing

Calculatorkeystroke sequences are strongly kinetic. But this sort of kinetic learn-
ing is disconnected from other channels: touch typists, for instance, often have
trouble locating keys. Many students can do impressive multi–step numerical
calculations but are unable to either write or verbally describe the expressions
they are evaluating. Their calculator expertise is not transferred to domains
where it can be generalized.

Even among high–achievers calculators leave an imprint in things like paren-
thesis errors. The expression for an average such as (a + b + c)/3 requires
parentheses. The keystroke sequence does not: the sum is encapsulated by be-
ing evaluated before the division is done. Traditional programs also encourage
parenthesis problems3 but they seem more common among calculator–oriented
students.

6.3 Lack of Kinetic Reinforcement

It is ironic that calculators might be too kinetic in one way and not enough in
another but this seems to be the case with graphing. In some K–12 curricula
graphing is now almost entirely visual: students push keys to see a picture on
their graphing calculators, and are tested by selecting from several pictures.
They never pick up a pencil and draw a curve. Many students seem unable
to internalize qualitative geometric information from purely visual input. Even
some of our advance–placement students are now unable to draw or verbally
describe the qualitative shape of an exponential or quadratic function.

That purely–visual instruction might have this effect should not be a sur-
prise. Many people know they can improve comprehension of written material
by copying it by hand. Kinetic reenforcement may be even more important for
qualitative geometry than for text.

6.4 Lack of Verbal Reinforcement

People with strong verbal orientations often have to be able to read an expression
out loud before they can understand it.

2For further analysis of this problem see Beneficial high-stakes math tests: an example at
www.math.vt.edu/people/quinn/education.

3See the Teaching Note on Parentheses at http://amstechnicalcareers.wikidot.org.

http://amstechnicalcareers.wikidot.org
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My daughter went back to school in her early thirties and had to take statis-
tics. At the beginning this was a disaster, but then I taught her how to parse
and read the expressions out loud. The material became easy and she finished
near the top of the class.

Now that I know what to look for, and how to look for it, it seems to me that
many students would be helped by verbal reinforcement. Unfortunately this is
rare in any approach to math: teachers talk more than listen and rarely make
students read out loud, especially when they don’t want to expose their igno-
rance. I cannot tell if calculators contribute to this problem but they certainly
aren’t part of the solution.

6.5 Summary

We have clever new technology but the same old brains. It turns out that some
of the dreary things involved in by–hand math actually connected with ways our
brains learn, and the ways calculators are used to bypass drudgery has weakened
these connections and undercut learning.

If the explanations offered are correct then there are several further conclu-
sions. First, some learning benefits of traditional courses are largely accidental
and a more conscious approach should significantly improve learning in these as
well. Second, calculators are not actually evil, but we must be much more so-
phisticated in how such things are designed and used4. But most of all, learning
must now be the focus in education. Not technology, not teaching, not learning
in traditional classrooms, but unfamiliar interactions between odd and variable
features of human brains and a complex new environment.

4See Student computing in math: interface design at the site in footnote (2) for an attempt
at such a design.
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Chapter 7

Student Computing in
Mathematics:
Interface Design

January 2009

Introduction

I taught my first computer math course in 1975 and was convinced that it
was the wave of the future. However it was atypical—a very small class at
Yale—and later attempts were unsatisfactory: either too labor–intensive, or
weak outcomes, or (usually) both. I have helped develop computer–based and
computer–tested courses, but, ironically, the students still use by–hand compu-
tation.

Others have had similar experiences. Even after much tinkering, few college
courses use more than calculators.

Calculators are widely used in K–12 math but many college teachers now as-
sociate calculator training with deficiencies in symbolic skills, number sense, and
geometric understanding. Reasons calculators might undermine higher learning
emerge from the analysis in this essay. Current calculators may be nearly the
worst possible learning environment. In any case this cannot be considered
successful.

Why has student computation been so problematic? The first problem seems
to be a lack of understanding of how people learn. The second is a lack of new
learning goals that computation should make accessible.
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7.0.1 Learning and the Interface

We understand teaching very well, but teaching evolved to produce learning
in a traditional classroom and, in math, using traditional techniques. It has
turned out that many features of traditional good teaching are artifacts of these
environments, not features of learning. In particular simple substitution of
technology for hand work in traditional lesson plans has turned out to be a
poor strategy.
§7.1 (Guiding Principles) gives a list of odd features of human learning and

the contortions needed to fit mathematics into it. The math material is relatively
general (support symbolic and abstract thinking, etc.) intended to guide design
of a learning–friendly interface. More content–specific material is discussed in
the sequel, Student Computing in Mathematics: Functionality.

The basis for this analysis is experience with computer–tested and computer–
based courses. These are a useful context for the study of learning because
students are the primary actors in formulating and implementing their learning
strategies. They can be guided but not as rigidly channelled as in traditional
classes. I have spent a lot of time watching students learn in this context
and their approaches are very different from what I tried to make them do in
classrooms for thirty years.
§7.2 (Interface Design) applies these principles to find input methods, for-

mats, and interactivity designed to maximally support learning. Such an inter-
face should, it seems, be quite different from ones now in common use. Among
the unexpected conclusions is that ordinary copy-and-paste is counterproduc-
tive: it does not leave a record that can be diagnosed for errors; and as a purely
kinetic activity it undercuts the use of symbols to represent other expressions.
Learning–friendly alternatives are proposed in §7.2.1.3 and §7.2.1.4.

7.1 Guiding Principles

This section gives some painfully–acquired insights about technology–enhanced
mathematical learning. The focus here is on human learning and generalities
about mathematics needed for interface design in the next section. Principles
used to guide functionality of the computational environment are discussed in
the sequel.

The point of view is as important as specific insights: there is much more
to be learned and as we gain experience we must be alert to new insights that
further shape design.

7.1.1 Learning, not Technology

Our objective is to help human beings learn. Humans are the bottleneck: tech-
nology design should be completely driven by the needs of human learning, not
by availability, limitations, or capability of technology. Examples:

http://www.math.vt.edu/people/quinn/education/studentComputing2.pdf
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• Calculators are cheap and effective; shouldn’t we exploit their availability?
No. Calculator design is constrained by low cost and small size, and they
are intended for calculation, not learning. They can be effective in meeting
modest short–range goals (e.g. in K–12) but are counterproductive in the
long run.

• Full–featured computer algebra systems have amazing capabilities; shouldn’t
we use them to “empower” students? No. They are designed for high–end
professional use, not learning. Students can easily get lost in full–featured
interfaces, and learning to mechanically use powerful black–box functions
usually fails to develop understanding that transcends the particular in-
terface or enables flexible general use.

To get good learning we must first understand learning, then we must design
technology specifically to support learning. Anything off-the-shelf, or easily
adapted from something off-the-shelf, is almost certainly unsatisfactory.

7.1.2 Symbolization

Elementary mathematics divides roughly into conceptual and mechanical (com-
putational) steps. The goal of providing a computational environment is to
enable focus on the conceptual activity. We discuss the division, then how it
should be organized.

7.1.2.1 Conceptual Activity

Conceptual activities include organizing information and representing it ways
suitable for computation. We refer to this as “symbolization” for several reasons:

• Material must be organized as symbolic expressions to be mechanically
manipulated. Numbers are considered symbols here since their special
properties only come into play in computational steps.

• Representing things as symbols is part of abstraction and a vital part of
mathematical thinking.

We expand on this last point. The human mind is quite limited in the number
of things that can be tracked or manipulated at one time. Fortunately the
individual things can be very complicated. Thinking about complicated material
therefore proceeds in two stages. The first stage is to identify good intermediate
abstractions to serve as conceptual units; pack as much structure as possible into
these units; and then develop enough automatic familiarity so we can actually
see and use them as units. The second stage is to think about interactions
between a relatively small number of these abstract units.

Representing things as symbols is only a small instance of the construction
of conceptual units but it plays a vital role in early learning of the methodology.
In particular if it is designed correctly it can serve as a model for later, more
elaborate instances.
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7.1.2.2 Computation

What counts as mechanical computation—to be farmed out to a machine—
depends strongly on level. Why, and what to do about it, is the subject of
the sequel, Student Computing in Mathematics: Functionality. However for
the most part computation involves manipulation or evaluation of symbolic
expressions. In other words, computation acts on the output of symbolization.

7.1.2.3 Organization

As noted above our objective in providing computational support is to enable
focus on symbolization. This can best be done by separating the two activities
as much as possible.

Traditional problem–solving usually alternates the activities: the general
practice is to compute as soon as a computable chunk of the symbolization is
complete. These interruptions fragment symbolization, distract from organiza-
tion, and conceal mathematical structure. A computational environment should
be exploited to consolidate activities: symbolize first, then compute all at once,
at least for elementary work. See the essay Beneficial High–Stakes Math Tests:
An Example for an illustration of this in a specific simple example. In particular
it is not a good strategy to simply use machines for the computational steps in
traditional approaches.

Calculator work largely bypasses symbolization and mixes organization and
computation so thoroughly that higher–order learning is inhibited. See the
reference just above for an illustration. Another can be found in §3.1 of Task–
oriented Math Education.

7.1.3 Modes of Learning

The first general point is that human learning is strange and complicated, and
while there are commonalities there are also great differences between individ-
uals. A design goal is to support the commonalities while leaving flexibility for
individual preferences.

The second point is that over time the complexities of learning become trans-
parent. Character recognition and parsing of mathematical expressions become
automatic. The use of a keyboard to obtain characters on a screen becomes
second nature. This means the way experienced people do or learn things is not
a guide to how neophytes learn, and effective tools for experienced users can be
barriers for beginners.

We give examples in four cases: visual/kinetic reenforcement, visual/verbal
reenforcement, the role of imitation, and subliminal learning. In each case we
see that technically inconvenient things may have to be done to connect with
human learning.

http://www.math.vt.edu/people/quinn/education/studentComputing2.pdf
http://www.math.vt.edu/people/quinn/education/example.pdf
http://www.math.vt.edu/people/quinn/education/example.pdf
http://www.math.vt.edu/people/quinn/education/taskoriented.pdf
http://www.math.vt.edu/people/quinn/education/taskoriented.pdf
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7.1.3.1 Kinetic Reenforcement

There are interactions between visual input (reading, seeing) and kinetic in-
put (writing, drawing, copying) that seem to be important for memory and
internalization of certain types of structure.

Examples:

• Mathematical notation is precise and delicate: omitting or wrongly locat-
ing a symbol, or misreading a statement, can completely change or destroy
meaning. Copying a problem by hand seems to improve comprehension
and reduce errors, and many traditional students are taught to do this
as a matter of good practice. Copying often does not make sense in an
electronic environment. We must be alert to problems caused by lack of
kinetic feedback, and may have to find a substitute.

• Very young children learn to generate and manipulate symbols kinetically
(by drawing them). This gets linked to visual recognition and alternate
entry modes (keystrokes) to eventually form a seamless unit not dependent
on drawing. Drawing does not translate easily to electronic environments,
but trying to reduce or eliminate it from early learning will probably cause
many children a lot of difficulty.

• Kinetic feedback seems to be vital for some students in internalization of
geometric structure. Specifically students taught to graph functions by
hand usually internalize the qualitative features of graphs of quadratic
functions, exponentials, simple rational functions etc. This internaliza-
tion is used strongly in later work involving plane and three-dimensional
shapes, multiple integrals, and the like. Students taught with graphing cal-
culators and tested by identifying a graph among several alternatives have
been trained completely visually. They have never, or rarely, picked up a
pencil and drawn the curve. And many of them cannot: apparently they
have not internalized qualitative features from the purely visual approach.
Omitting kinetic reenforcement puts these students at a disadvantage.

There are interesting examples in other subjects. Coloring books are a common
adjunct to anatomy texts. Apparently kinetic feedback from coloring in muscles,
bones etc. is helpful in fixing these complicated structures in memory.

Kinetic reenforcement might be incorporated in technology by, for instance,
requiring students to trace over a computer–generated graph before allowing
them to use it or submit it for a grade.

We caution that kinetic involvement alone is not a goal. Calculator arith-
metic is intensely kinetic but counterproductive because it replaces rather than
reenforces work with structure and symbols.

7.1.3.2 Verbal Reenforcement

Some people have strong verbal orientations. People who move their lips when
reading, for example, are translating from visual input to kinetic (movement of
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lips and tongue). Their best comprehension is through the kinetic channel, and
comprehension falls if they have to rely on visual input alone (trying to read
while eating, or trying to read something—like mathematics—that they can’t
pronounce).

Errors that involve confusing or substituting symbols that sound the same
indicate verbal involvement. Confusing m and n, or M and m is probably a
verbally–based error, while confusing p and q is a (dyslectic) visual error.

Verbal is not the same as auditory: there is a profound difference between
speaking and hearing. Some students can transcribe lectures but can’t read
their notes out loud. Children in rural areas can listen to standard English on
television for many hours each day but only be able to speak an incomprehen-
sible local dialect. Hearing and speaking tend to be more tightly linked in later
life but this is an example of the transparency that can conceal basic features
of learning.

A corollary of this point is that audio or audio–visual materials are not a
substitute for student verbalization. I do not have any clever ideas on how to
incorporate verbalization into technology. For the present this has to remain a
job for teachers.

Implications in math education:

• Children should probably be taught to read (out loud) what they have
written. They should be encouraged to listen to what they say, and make
sure it is what they meant to say. In other words, run stuff through the
verbal channel to check it for accuracy.

• Students should be taught how to read material out loud. For instance
reading expressions involving parentheses can be tricky and this is proba-
bly related to the frequency of parenthesis–related errors. This difficulty
is not a justification for avoiding parentheses since this leads to serious
problems later on.

• Reading is closely related to parsing because reading requires linear orga-
nization. I have seen verbally–oriented students completely stumped by
notations such as Σni=1

i
2i that make use of positional information. They

usually find it tractable when taught how to parse it so they can read it
out loud.

7.1.3.3 Imitation

People learn a lot by watching other people do things provided they can see
how it is done. A teacher working a problem at a blackboard provides a model
that can be imitated. Exactly the same information presented using prepared
overhead slides, projected computer output, or PowerPoint cannot be imitated
and therefore deprives students of this primitive and innate learning mode.

There is a particular role for imitation in mathematics. Since we do things
one-at-a-time the construction of a mathematical expression is a linear dynamic
process.
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• Mathematics itself is usually not linear so this process involves a lineariza-
tion, ideally one that follows mathematical structure.

• Parsing an expression, for instance to read it out loud (see the previous
section), also involves a linearization.

These two linearizations are often different. If students are not given examples
to imitate then they almost always try to use the parsing linearization, and this
is less efficient and more prone to errors than structural linearizations.

The following examples are fairly complex so opportunities for confusion will
be clear. Students will have similar problems with much simpler expressions:

• The structural linearization used to expand (a+b+c)10ex−5 has first step
a(. . . ) + b(. . . ) + c(. . . ). We then enter the complicated expression inside
each pair of parentheses. The verbal linearization requires switching back
and forth between a, b, c and the complicated expression, and offers many
more opportunities for error.

• The structural linearization used to construct Σni=1
i
2i begins with Σ(. . . ).

Filling in the parentheses is usually the next step and the limits come last.
In the verbal linearization the summation variable and limits come first,
not last. This invites errors like Σni=1

n
2n .

It is easy to see implications for machine–based examples and presentations:
they should be dynamic and emphasize the thinking behind each step. It is less
clear how this should influence design of a computational environment.

7.1.3.4 Subliminal Learning

Students can potentially learn from anything, and it is often unclear exactly
what they are learning. A consequence is that everything should be designed so
that if students do learn from it then they will learn correctly.

For instance by–hand arithmetic involves a lot of symbol manipulation and
shows mathematical structure in action. It may be that students internalize it
and this prepares them for algebra. Calculator arithmetic avoids symbols and
hides structure and so does not provide the same opportunities for subliminal
learning.

As another example we describe how very young children can be offered an
opportunity to absorb a sophisticated mathematical viewpoint. Mathematicians
think of “addition” in functional terms: any binary operation that is associa-
tive, commutative, has a neutral element and inverses is entitled to be called
“addition” and represented by “+”. One point of the abstraction is that work
habits appropriate for integers and other elementary examples are equally valid
for any other “additive” system.

Now imagine showing a child that pretty much any two expressions that can
be entered into the computational environment can be combined using +. In
general this is just a property of these things, but you can see what it is good
for in special cases: if you combine numbers representing lengths of two sticks
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using + then you get the total length of the two sticks joined together. In other
words, finding lengths of joined sticks is an application of + when it is applied
to numbers. It is not the definition, and + is not limited to numbers that can
be interpreted as lengths. This is not a point that should be made explicit
to children, but the approach presents it in a way that it can be absorbed
subliminally.

7.1.4 Process, not Answers

The particular virtue of mathematics is that correct use of correct methods
gives correct answers. The focus in learning mathematics should therefore be
on methods and their use. The implication for the current context is that
a learning environment for mathematics should “show work” in the sense of
providing a record of the methods and reasoning used, and this record must be
usable for locating and targeted correction of reasoning errors. A wrong answer
only indicates that an error was made, not the nature of the error, and without
a diagnosable transcript the only recourse is to repeat the work and hope for a
better result the next time.

“Correction” here means fixing errors of reasoning or mathematically incor-
rect methods, not conformity with a standard template. An alternative but
mathematically correct approach does not need correction.

7.1.4.1 Learning from Process

In any other subject there is enough imprecision in terms or context, or possi-
bility of unanticipated factors, that careful logical reasoning can fail to give a
correct conclusion. It is still worthwhile because it greatly improves the chances
of getting a correct conclusion, and I believe that experience with careful rea-
soning in complex logical systems is the greatest general benefit of studying
mathematics. In this sense the medium is the message.

7.1.4.2 The Role of Answers

Mathematics also has the virtue that incorrect reasoning usually gives an iden-
tifiably incorrect conclusion. This means correct answers can be a useful proxy
for correct reasoning. However this is only true if students are using correct
methodology. Independent checks on methodology should be possible, and the
reasoning itself should be available for diagnosis and correction when the answer
is wrong.

7.1.4.3 Diagnosis and Error Correction

Ideally every error should be diagnosed and corrected. This would catch misun-
derstandings immediately, before they can be reenforced by repetition. It would
also encourage students to work carefully to avoid triggering the diagnosis pro-
cess.
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Our best goal is for students to learn to detect, diagnose, and correct their
own mistakes. Teacher diagnosis and correction should offer models students
can imitate. Self–diagnosis can also be promoted by providing diagnostic aids
for worked–out problems, see Task–oriented Math Education, and the Teaching
Notes on the AMS Technical Careers web site. This is an aspect of problem
design rather than the learning environment, but it can only be effective if there
is a record that students could try to diagnose.

7.2 Interface Design

This section is concerned with structuring the interactions between student and
machine. Objectives established in the previous section include focus on orga-
nization and construction of mathematical expressions (§7.1.2 Symbolization);
supporting learning modes such as kinetic reenforcement (§7.1.3.1); and pro-
ducing a diagnosable record (§7.1.4).

Much of the student–interface interaction looks like elementary program-
ming. This is implicit (or subliminal) rather than explicit, and is enforced by
the structure of the interface. This is not an accident: programming requires
extensive symbolization and explicit use of structure and so is a good model
for mathematical learning. In fact it is completely compatible with the primary
learning objectives to take development of fluent use of high–level programming
languages as an additional long–term objective.

The section is divided into Input Modes, concerned with immediate interac-
tions between student and machine; Windows and Sessions, describing structure
of interactions, and Input Formats.

7.2.1 Input Modes

The primary input mode should be writing or drawing directly on the screen
with a stylus. Reasons include:

• For young children this avoids indirect input and provides kinetic reen-
forcement for number and symbol formation;

• for all students it provides kinetic reenforcement of graphic work (§7.1.3.1);
and

• it enables easy and intuitive addition of commentary and reference tags.

7.2.1.1 Character Recognition

The interface has to provide character recognition, but it should probably should
not learn the user’s style. Reasons include:

• It is appropriate to expect reasonably clear character formation, and for
mathematical material it may be better for the interface to be a bit picky
about characters than to have to override inappropriate guesses. “Guess”
could be provided as a button.

http://www.math.vt.edu/people/quinn/education/taskoriented.pdf
http://amstechnicalcareers.wikidot.com
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• An adaptive system leads to non–portable input habits: they won’t work
on other machines, and in particular not on secure systems used for testing.
Some individual calibration will be necessary, for instance for left– and
right–handed differences, but this should be kept to a minimum to avoid
becoming a stumbling block.

It is not so important that text entry be portable, and careful math mode would
be available as a backup, so these considerations do not apply to text.

Anyone concerned about asking students to adapt to an interface should
reflect on how well they have adapted to a really terrible text interface: entering
text on a numeric keypad with their thumbs!

7.2.1.2 Keyboard

A standard keyboard should be provided for fast entry of text. However there
should be no function keys:

• Functions may be disabled.

• Functions should be considered parts of mathematical expressions, internal
to the symbolization process and recorded in the transcript, not as external
objects living on a keypad. Logarithms should be obtained by writing
“Log” and evaluating, not by pushing a button.

• In order to separate conceptual and computational steps we want students
to construct expressions, possibly including functions, and then evaluate
them. Immediate evaluation (via a function key) defeats this.

For similar reasons the interface should generally not depend on palettes for
insertion of symbols, patterns, or functions. It might provide lists or browsers
from which material can be copied in appropriate ways.

7.2.1.3 Copy-and-Paste via Symbols

Standard copy-and-paste has the same invisibility and symbolization–defeating
problems as function keys and so should be strictly limited. We suggest substi-
tutes for some of the functionality.

The first replacement for copy-and-paste is symbolic assignment. The stu-
dent can select an expression in a static window and assign it a name, for
instance by writing “A=” in the selection area. The expression can be used in
an input window by entering the name, “A”. When the name is referenced the
selection and name assignment should be frozen to preserve a record.

Example: A company has 47 employees with an average salary of $37,867.
What is the total payroll of the company?

The student can select 47 and write “emp=” in front of it, then select 37,867
and write “sal=” in front of it. He then can enter “emp*sal” in the input win-
dow and evaluate to get the answer. Alternately he could enter “payroll = emp*sal”
to have the output accessible for later use. Note this scheme subliminally sup-
ports symbolic thinking, see §7.1.3.4, and provides a record of the work.
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7.2.1.4 Copy-and-Paste via Tracing

The second replacement for copy-and-paste is provided by tracing “templates”.
The student selects something in a static window and drags it to a work window.
A dimmed copy appears. This cannot be evaluated or further selected, but the
student can trace over it to get a functional copy.

• For young students this provides kinetic reenforcement of character and
symbol formation, and construction of expressions.

• This provides kinetic reenforcement of graphic material, see §7.1.3.1.

• Expressions or graphic material can be modified rather than traced ex-
actly. Symbols could be changed to change the input into the expression,
for instance.

Again the selection area should be frozen and linked to the template to provide
a record.

7.2.1.5 Copy-and-Paste in an Input cell

Input cells in a Work window (§7.2.2.3) should be an exception to these restric-
tions. These cells serve as “scratchpads” and there currently seems to be no
reason to disable full copy-and-paste within such a cell.

7.2.2 Windows and Sessions

There should be three standard window types: Data, Work, and Preview.

7.2.2.1 Data Windows

These are static in the sense that they cannot be edited, but annotations and
selections can be made in an overlay.

Data windows can have form boxes in which material can be entered, for
example answers when the data window displays a test. Form boxes should be
assigned names so material can be entered either directly (by stylus or keyboard)
or by assignment. For instance in the payroll example in §7.2.1.3 the answer
box might be assigned the name “answer5” and the answer could be recorded
by entering “answer5 = emp*sal” in the Work window.

Note this design makes symbol use natural and helpful so it encourages
symbolization.

7.2.2.2 Preview Window

The preview window nicely formats expressions but does not manipulate them.
Expressions to be previewed are selected (in the usual way) and a Preview
button is activated.

• Error messages are issued, for instance when parentheses are unbalanced.



162 CHAPTER 7. STUDENT COMPUTING: INTERFACE DESIGN

• The formatting displays how expressions will be interpreted. For instance
the expression 2^5 x will be previewed as 25x. If 25x was intended then
the mistake will be evident and appropriate parentheses added.

• Complex expressions should routinely be proofread using Preview. For
instance the TeX expression \Sigma^n_{i = 1} \frac{i}{5^i} is pre-
viewed as Σni=1

i
5i . If this is not what is intended then the input expression

can be edited.

• Some incomplete expressions should be previewed as expressions with
boxes for missing material rather than giving an error message. For in-
stance the incomplete Mathematica expression Integrate[ , {y, }]
should be previewed as

∫
dy.

Preview material cannot be edited directly, nor can it be copied. If the source
window is static then the original selection can be assigned a name or can be
used to form a template. If the source is in an active input window then it can
be edited.

7.2.2.3 Work Windows

Work windows are divided into alternating Input and Output cells.
The bottommost Input cell is active, and can be edited, previewed, and eval-

uated. Results of evaluation appear in the Output cell immediately below. The
Output cell cannot be edited. The active Input and Output cells are dynamic so
cannot be annotated and the material in them cannot be selected for copying.

Input and Output cells other than the bottommost are static (have been
frozen) and cannot be edited. They can be annotated in the overlay, parts
selected and copied, etc.

The active Input cell can be repeatedly edited, previewed and evaluated. It
becomes inactive (is frozen) when a new Input cell is opened at the bottom of
the window or an End Session button is activated.

Input and Output cells can be deleted. Links and symbolic–copy material
from a deleted cell disappear with it. If the bottommost remaining cell is an
Input cell then it becomes active.

7.2.2.4 Sessions

A session consists of working in an Input cell, freezing it by opening a new Input
cell, and repeating as needed until the session is closed.

When a session is closed the Data and Working windows are linked and saved
together as a Data window. This preserves the work record because it can no
longer be edited. This record can be diagnosed for errors and annotations can be
added to record the diagnosis. It can also be used as a source to rework problems
using a new Work window. Correct fragments from the previous session can be
spliced in to reduce repetition and focus on corrections. All this provides support
for the diagnosis and targeted learning described in §7.1.4.
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Closing the session may activate additional features. For instance if the Data
window contains a test then closing the session should activate scoring functions
to grade the test, and a section containing answers and diagnostic hints should
become accessible.

7.2.3 Input Formats

We have discussed how symbols and other material should be entered in the
interface. The topic here is how these objects should be arranged to be accepted
for processing. We will mostly be concerned with symbolic material. There
seems to be a role for an input format for graphics but it is far from clear
what should be involved. There should also be formats for data entry, for
instance tables of numbers, but these will be special–purpose and infrequently
used. Entering a lot of numbers is not a useful or real–life activity and data will
usually be accessible in electronic format.

The design is driven by concern for learning and based on watching and
working with students on computer projects in calculus and vector geometry.
A particular conclusion is that writing and reading need to be separated. A
symbolic input format must be easy to write and edit; it need not be easy to
read. The beautiful two–dimensional formats of typeset mathematics are easy
to read but not easy to write (for machine use) and not easy to edit. There is
not going to be a satisfactory single format. Instead we optimize formats for
specific uses and use Preview and other tools to negotiate between them.

7.2.3.1 Linear, Primitive, Explicit, Verbose

These are characteristics needed to make the format easy for inexperienced users
to write and edit. Sophisticated or experienced users with other needs should
use a different system.

“Linear” means in particular that the format should not incorporate posi-
tional structure ( a ∧ 5, not a5). Positional data entry invites mistakes and
frustrating misinterpretations. Positional representations are harder to edit.
Finally, copying part of a positional representation can fragment formatting
instructions and lead to bizarre results and obscure crashes.

“Primitive” essentially means limited to text. A good rule of thumb is that
it should be possible to send an input expression by email as text. We might
accept Unicode rather than ASCII so some symbols could be considered text.
However most mathematical functions should be spelled out in some way.

“Explicit” means everything in the expression must be visible. Invisible
material, for instance formatting instructions, is dangerous and not worth the
trouble. “Unambiguous” should be part of this. For instance multiplication is
better denoted by ∗ than× or a dot since the latter two are easily misinterpreted.

“Verbose” means that instructions and function names should be spelled out
in ways that are easy to guess and remember. For instance to get an integral one
should write out “Integral”, and then provide arguments. Abbreviated func-
tion names can be entered faster by experienced users but add a coding/decoding



164 CHAPTER 7. STUDENT COMPUTING: INTERFACE DESIGN

layer that is difficult and distracting for students.
To repeat, the objective is a format that students can easily learn to write

and edit. The features listed above seem to help with this but do not guarantee
success. In particular, students learn most easily and naturally from examples
and hints, not explicit instruction. If students have trouble learning basic use
of the format from examples then the format needs improvement.

7.2.3.2 Mathematically Correct

It may seem odd that this needs explicit mention but traditional notations and
ways of thinking are sometimes imprecise, rely on context, or are heuristic rather
than really correct. In such cases correctness requires a break with tradition.

For instance “=” is traditionally used in several different ways. The expres-
sion

y = ax2 + bx+ c

may indicate an assignment : the symbol y is given the value of the expression
on the right side. Or it may indicate a test : a relation that is either true or false,
as in “Intersection points of the two curves are points (x, y) that satisfy . . . ”.
Further, an assignment can be immediate, in which case y is given the current
value and not effected by later changes in a, b, . . . ; or delayed, in which case
y is a shorthand for the right–side expression and it’s value at any particular
time reflects current values of a, b, . . . . It could even be an implicit assignment
intended to specify a or x, etc.

This notational ambiguity means a traditional expression containing “=” is
incomplete and must be accompanied by text indicating the meaning. Confusion
results when, as is too often the case, the text is omitted1. This is bad enough
in common practice and unacceptable in a machine environment.

A mathematically correct format must have different notations for these
different meanings, or support them in other ways (e.g. implicit assignment
might be done with a “solve” function rather than a variation on “=”). This
will conflict with ambiguity in traditional notation and language, but we should
see this as a feature (who needs self–inflicted notational confusion anyway?)
rather than a flaw.

7.2.3.3 Graphics Input

An important objective in studying functions is to develop a feel for qualitative
features of their graphs. What does rest look like as a function of t, independent
of the values of r, s? How about r + (t − s)n? Beautiful computer–generated
graphs in specific cases are not a substitute for qualitative understanding.

It would be nice to have a full syntax and computational context for qual-
itative graphic information, but for starters it would be useful just to have an

1The confusion can even include a failure to recognize this as a notation problem. W. Byers
in How mathematicians think: using ambiguity, contradition, and paradox to create mathe-
matics, (Princeton U. Press 2007) argues that this reflects a basic ambiguity in mathematics
itself!
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input format. Suppose we ask a student to draw a graph with the qualitative
features of an exponential function. How can we extract (mechanically) the
qualitative features of graphic input to determine if the drawing is reasonably
correct?

Note that we really do want students to draw the graph by hand. Kinetic
reenforcement seems to be essential for some students (§7.1.3.1), and is probably
important for all, so this is another case where technical difficulty or convenience
cannot be allowed to override educational concerns.

7.3 Summary

The long–term goal is to better prepare K–14 students for advanced learning in
mathematics, science, engineering, and other technical disciplines. It seems ob-
vious that this should include systematic use of machine computation, but most
attempts have been counterproductive and none have been fully satisfactory.

The core problem seems to be that current computational environments do
not support the complex oddities of human learning. This essay describes a
rough draft for an interface design driven by this complexity and the structure
of mathematics. The final form will no doubt be different from this draft but
it should also be clear that it will be profoundly different from any current
interface. It is also clear that development of such an interface is a delicate and
sophisticated undertaking.

The sequel, Student Computing in Mathematics: Functionality concerns the
need to carefully limit functionality of the computational environment.

http://www.math.vt.edu/people/quinn/education/studentComputing2.pdf
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Chapter 8

Task–Oriented Math
Education

October 2008 Draft

Introduction

“Learning tasks” on which students work independently with support by helpers
and web materials provide an approach to math education. Experience at the
Math Emporium at Virginia Tech demonstrates educational effectiveness at the
college level and suggests it should work in upper grades in K–12. Implemen-
tation would be tricky so the factors involved are considered carefully and in
detail. Benefits could include significant improvement in the quality and effects
of high–stakes tests. Many of the educational advantages come from giving
students more choices and more control over their learning.

8.1 Goals and descriptions

The long–term goal is to improve math outcomes in K–12 and the first two years
of college. As a professor at a university with large science and engineering
programs I am particularly anxious for significant improvement in the top 5–
10% of high school graduates.

The educational system is highly stressed and traditional instruction seems
to have reached a limit. Better outcomes apparently require a new approach, but
so far there have been as many ways to fail as there have been new approaches.

This article presents yet another new approach, with strategies for avoiding
all the modes of failure I have been able to identify. Because there are so many
of these modes, and because avoiding one often causes trouble with another, the
description is detailed and complicated.
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8.1.1 Descriptions

We begin with two contrasting descriptions. The rest of the article can be seen
as an attempt to reconcile the two.

8.1.1.1 Sympathetic Description

Task–oriented courses enable students to use modern learning resources in ways
that best suit their individual learning styles. Course objectives are formulated
as a sequence of tasks to be mastered. Students are provided with an array
of web materials, video and audio presentations, printed materials, and access
to individual helpers. Other opportunities might include traditional lectures,
study groups, or group projects. Students choose or combine these resources
with the freedom that they have come to expect with the internet, games,
television programming etc. Learning is richer and more efficient than is possible
in traditional classrooms. Finally, because it is more efficient, expectations can
be raised without serious rise in failure rates.

8.1.1.2 Critical Description

This approach amounts to having “pass the test” as the course objective, and in
traditional classrooms is called “teaching to the test”. It fragments material into
discrete tasks and weakens development of conceptual context and connections.
The result is learning that is mechanical, disconnected, and short–term. The
use of new–age materials may engage students but will not fix the underlying
shortcomings, and the idea that outcomes would actually be better is a fantasy.
There are other problems common to most novel programs: they are usually
economically unrealistic, particularly in being seriously over–budget in demands
on faculty time; and heavy dependence on computers make them ineffective for
a significant number of students. Neither of these would be acceptable even if
educational outcomes for most students were satisfactory.

8.1.2 Discussion

The objections raised in the critical description are between 99% and 100%
valid. The question is whether there is even a 1% window for success, and if
so whether we can design a program with enough care and sophistication to
squeeze through it. Specifically, is there any way a task–oriented program could
provide outcomes at least as good as traditional programs, for the same student
population, and within the same time and money budgets?

Reasons vary in different communities but the general conclusion would be
“no”. For instance task orientation is incompatible with basic tenets of the
K–12 education community, e.g. as formulated in NCTM publications.

Not long ago I also would have dismissed the idea as nonsense. As a univer-
sity professor I highly value conceptual context and connections. High–school
AP calculus is a prime example of a teach-to-the-test course and I have spent
a lot of time getting students out of that mode so they can be successful at
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the university level. But I now feel that effective task–oriented courses may be
possible, and indeed may have significant advantages.

The change of heart is due to experience with a computer–tested calculus
course and programs in the Math Emporium at Virginia Tech. I watched and
worked with students to see how they used materials, then modified the mate-
rials to work better when used that way. In effect the students taught me how
to construct an effective learning environment.

I discovered that students were using practice tests as study guides. Diag-
nostic aids, comments, and links to reference materials were added to make this
more effective. Considerable effort went into designing problems so that ab-
stract understanding gave a problem–solving advantage. And as the materials
matured students used them differently. The description of a “task–oriented
learning program” is an attempt to formulate what students are actually doing.
But the fact that students want to learn this way is only useful if learning goals
can be met.

Learning goals are being met in the main course involved, second–semester
calculus for science and engineering. Virginia Tech has strong science programs
and a large engineering school so this is a key course. Weak outcomes, higher
dropout rates, reduced content, or increased cost would not be acceptable. In
the last four years thousands of students have taken the course divided roughly
equally between task–oriented and traditional sections and with a common final
exam, so there is a lot of data. Detailed analysis will be presented in another
essay.

The course was not explicitly developed to be task–oriented, and is still
evolving. Traditional lectures are still provided, for instance. Nonetheless it
provides good evidence that the idea is workable.

8.1.3 Summary

Experience with a university calculus course suggests that educationally effective
task–oriented courses are possible but there are a great many ways to fail. The
remainder of the article describes failure modes and attempts to chart a way
through.

8.2 General Constraints

Tasks as described here do not provide a general approach to education. In this
section we describe some of the limitations and interpret them as constraints
on topics and levels where the approach could succeed. In particular the idea
shows most promise in mathematics; it might be useful in other contexts but
we do not speculate on this.

The limitations described here will also appear as constraints on program
design in later sections.
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8.2.1 Non–terminal courses in a task–oriented subject

Non-terminal math courses up through calculus and differential equations are
essentially task–oriented. Non-terminal means that the ideas and skills acquired
in the course are expected to be used in a later course on mathematics, science,
engineering, business, etc. The bottom line for the later course is ability to rou-
tinely and accurately solve certain types of problems. Abstract understanding
can be helpful or even essential for flexible and effective problem solving. In
a real sense this is the job of abstract understanding in math. Understanding
that does not support problem–solving is dysfunctional from the later–course
perspective. Therefore it makes sense to approach even abstract understanding
through tasks in these courses.

Terminal courses (not intended to be used later) typically aim for cultural
exposure and a softer understanding that does not have to support problem–
solving. A task approach is less appropriate for these courses. It may work
anyway: most of our task–oriented courses are actually more-or-less terminal.
Lower–level and possibly terminal courses may work well as tracks in a task–
based course, see §8.6.3 Tracked Courses. However for simplicity we focus on
non–terminal courses.

8.2.2 Students capable of modestly independent work

In a task–oriented course students take the initiative in selecting tools and devel-
oping and implementing learning strategies, at least on a small (single-problem)
scale. This requires some maturity and purposefulness. We emphasize that
these are not on–line courses and do not require nearly as much independence
as on–line courses, see §8.4.1.

We have made no attempt to adapt the approach to very young students
and have no guess as to what might be needed or what the limits might be.

8.2.3 Computer–based

Large numbers of practice tasks are needed. Web links and interactivity are
required to make them an effective learning environment. As a result tasks must
be provided in electronic format and much of the work done on computers. We
return to this in §8.3 More About Tasks.

8.2.4 Helpers

Human helpers are essential for most students. Helpers do not teach in the tra-
ditional information–delivery sense: their role is to help students who get stuck.
Students develop skill at locating and correcting minor errors, and diagnostic
aids are provided to help with this. But any student will occasionally get stuck
in a way he or she cannot unravel. The helper diagnoses the specific problem
and shows the student how to repair it.
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8.2.4.1 Constraints

When appropriately offered, help sessions are short and the average total time
required per student is less than in traditional classroom instruction. In other
words helper time and expertise are leveraged. This is not a sure thing and
making it work seems to require the following:

• Help should be in person. We have tried a number of schemes for on–line
help and found them unsatisfactory. A problem that requires a helper is
by definition one that the student cannot locate or articulate, and in these
situations direct interaction and observation of body language are often
essential.

• Help should be quickly available when it is needed. In schools this means
opportunities to work in a single location (computer lab) with helpers
available to respond to help requests.

• Helpers should circulate in the work area and go to students when they
need help. This results in short, targeted interventions. If students have
relocate they tend to spend more time stuck and often collect a list of
problems to make relocation worthwhile. They then want to settle in for an
extended tutoring session to work through the problems and reconstruct
the specific difficulty in each one. This is less efficient for both students
and helpers and often has the effect of making helpers unavailable for
other students.

Some students do need extended tutoring and we provide this as a separate
resource to keep them from tying up the helpers.

8.2.4.2 Opportunities

Helpers can be effective with considerably less background and preparation than
would be required to teach the course. In fact most of our helpers are advanced
students. This provides a number of opportunities.

• There is a severe shortage of fully–qualified math teachers. Use of less–
qualified helpers, e.g. advanced students, teachers with expertise in other
areas, or even parent volunteers gives a way to leverage the skills of the
teachers available.

• Having older students work with young ones benefits both groups. There
have been proposals to incorporate this into school curricula either as a
“highly encouraged” volunteer activity or as a required component of a
course. Helpering would incorporate it as a paid part–time job.

Paying student helpers is feasible because efficiencies elsewhere make it
possible without increasing the overall budget, see §8.5.2 Operating Ex-
penses. It is a good idea because it would be important to attract the
best older students; developing help skills takes time and effort; and the
system depends on reliable participation for most of the school term.
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It would be interesting to see the effect if excellent performance in math
courses guaranteed a part–time job in the senior year. Help experience
might also make teaching more attractive as a profession.

• Providing high–quality math instruction is one of the biggest challenges
of home schooling. But tasks as described here are computer–based so
they would be available anywhere, and background sufficient for helping
(rather than teaching) would enable parents to use them successfully.

8.2.4.3 Proctors

Proctors are needed to supervise computer–based tests:

• Check ID and sign in students;

• ensure disallowed materials are not brought into the test area; and

• activate for–credit tests on the machine.

Since tests are multiple–try and not tightly scheduled, they must be available
for extended periods and demand is unpredictable. The way we handle this is to
use one end of the lab for testing. The actual area reserved for testing expands
or contracts according to need.

The number of proctors needed also varies unpredictably. This is handled
the same way: when the test area expands helpers are reassigned to proctoring,
and when testing contracts they are released back to helping. As a result we
consider proctoring as part of the help process rather than as a separate job.

8.2.5 Traditional class meetings

Our course with a strong task orientation still provides traditional lectures as a
resource. Most students find that with all the other resources the lectures are not
necessary. Some student attend faithfully even though they don’t get additional
credit. Attendance has—amazingly—essentially no correlation with outcomes.
This needs additional study but it may reflect learning styles: students who learn
best in a class come to class, and those who can efficiently use other resources
don’t come. It does result in a closer and more interested class atmosphere. In
any case it seems likely that success for all students will require some sort of
lecture–style component, but it probably should not be compulsory.

8.2.6 Summary

A task–oriented approach may be appropriate for non–terminal math courses
from approximately fifth grade through university calculus and differential equa-
tions. Materials are primarily computer–based, and opportunities must be pro-
vided to work in an area with qualified helpers available. Some students will
probably need a class or lecture component to be fully successful.

In following sections we discuss additional requirements for success in these
contexts.
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8.3 More about Tasks

In practice a task is presented as a collection of practice tests.

8.3.1 Tasks are not Assessments

There is a vital distinction that must be emphasized immediately. Traditional
tests are assessments not intended to directly influence instruction. To the ex-
tent that they do, the influence is bad. “Teach-to-the-test” has a bad reputation
for good reasons, and an attempt to base task–oriented learning on a traditional
assessment test can be confidently expected to fail.

Differences between learning tasks and assessment tests include:

• Learning tasks are harder. Assessments frequently use simple special cases
or spot–check to avoid excessive time or computation requirements. But
if this guides learning then students only learn simple cases and will skip
things missed by the spot–checks. Effective learning tasks must be in
some way comprehensive and represent the full complexity of problems
that arise in later study. Below we describe how to accomplish this.

• Learning tasks are frequently more abstract. For instance a test question
on area formulas might be “What is the side length of a square with
the same area as a circle of radius 6?” The numerical formulation gives
students an opportunity to use calculator skills, and for test designers it
has the advantage that they can get a whole family of apparently different
questions by changing the number.

Questions like this are bad learning goals. We really want students to
be able to do it for a circle of symbolic radius r: set the area formulas
equal, πr2 = s2, and solve for s to get s = r

√
π. Different number versions

become “Plug r = 6 into r
√
π”, “Plug r = 7 into r

√
π” etc. The numerical

aspect is completely mechanical and we really don’t want students to
see different numbers as giving different problems. A focus on numerical
versions actually inhibits development of symbolic skills. Consequently
learning tasks should be, for the most part, not numerical.

• Learning tasks must incorporate conceptual material by making it directly
useful in problem–solving. Assessment tests tend to be formula–oriented
and the role of conceptual understanding is essentially to help students
choose the right formulas. Students trying to learn from them will see
only the formulas. Making concepts directly useful is difficult but usually
possible, and the effort often leads to deeper understanding on the part
of the course developer! See the Preparation for Technical Careers web
site http://amstechnicalcareers.wikidot.com sponsored by the American
Mathematical Society for examples.

• Learning tasks must support learning. When a student looks at a problem
and thinks “how do I do this?” or “I thought I knew how to do this but

http://amstechnicalcareers.wikidot.com
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I can’t get the right answer” there must be some way to make progress.
Typically this includes links to reference material with concise descriptions
of principles and worked–out examples. Current textbooks work poorly
for targeted references: wikipedia might be a better model. Problem–
specific diagnostic aids can help locate errors. Complete solutions are not
so helpful: some students confuse “see how it is done” and “learn how to
do it”.

8.3.2 Learning–goals and strategies

The student view of the process is:

• there is a test that has to be taken for a grade;

• the test is computer–generated so is actually a huge number of essentially
equivalent instances rather than a single static thing. It (more precisely,
different instances of it) can be taken multiple times with the highest score
being the final grade;

• there is a time window during which the test can be taken for credit, with
a very firm deadline;

• students can get an unlimited number of practice versions generated in
exactly the same way as the for–credit versions; and

• there are various resources available to help with figuring it out.

The intent is that students will look at several practice tests to get an idea
of what needs to be done. This will vary widely: a few will be able to do most
of it immediately while a few will have a long way to go. But if they have kept
up and previous courses have done their jobs then students should be able to
identify their individual problem areas fairly quickly. In other words, students
should be able to be able to formulate learning goals on the basis of four or
five practice tests, and should be able to develop a strategy for dealing with
difficulties they encounter.

8.3.3 Task Constraints

Our objective is to make the student view work, not fight it. This presents some
serious challenges.

8.3.3.1 No shortcuts

Most students know that traditional tests have weaknesses:

• tests focus on simple cases and conceptual material is usually not tested;

• problems on computer tests (or human–written ones for that matter) are
usually drawn from a limited database and enough practice versions will
show essentially all of them; and
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• most tests have structural weaknesses. Knowing how a test is constructed
and scored can give a student a statistical advantage independent of con-
tent knowledge, and many students have taken courses in test–taking
strategies that exploit this.

We have had students download fifty practice tests, presumably looking for
repetition, systematic weaknesses or omissions. Judging by outcomes they were
not successful. This is already a difficult accomplishment but it is not good
enough: the goal is not just to make this a waste of time, but to make it
quickly clear (after seeing four or five instances) that it will be a waste of time.
This does not mean that serious problems on every topic must appear on every
test, but they must appear often enough to convince students that learning the
material will be the simplest way—and the only reliable way—to be consistently
successful.

8.3.3.2 Consistency

Students should see different test instances as essentially similar in several ways.

• Layout: If learning goals are formulated on the basis of four practice tests
then a fifth should fit into the framework. In practice this means that
if the first two problems on one test concern topic B then the first two
problems on any other should also concern topic B. They might be easy on
one and tough on another, and there are exceptions, but as a rule topics
should be consistent.

A common and cheap way to make assessment tests look different is to
scramble the questions. This is inappropriate for learning tasks because it
interferes with goal and strategy formulation. Depending on scrambling
is also an easily–discovered structural weakness.

• Difficulty: Tests should be consistent in overall difficulty. First, a realistic
test must omit or simplify something, so a tough problem on topic B might
be balanced by easy questions on topic C. Balancing difficulty does not
undercut learning as long as students know they have to be prepared for
the balance to go the other way on the next instance. Second, any real–
life system will produce some instances that are genuinely harder than
others. Students seem to expect this and are not bothered by it provided
it doesn’t happen often, the worst instances are never truly horrible, and
they can take the for–credit versions multiple times.

• Not adaptive: Adaptive tests are also multiple–try, but the test system
tracks results and when a student demonstrates success with one topic
it is omitted from later tests and the focus shifts to other topics. One
drawback of this is described in Layout above; here we give another.

Suppose a test has ten problems and a student wants a score of 80%. To
be reasonably sure of getting this he needs enough mastery of the topics
of six or seven problems to be sure he can get them right, and a good
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enough grasp of the remaining ones to have a 50–50 chance on each. Such
a student will finish the course with a good mastery of most of the material.
Recall that the courses under consideration are non–terminal, i.e. needed
for further study in science, math, or some other technical subject, so
mastery is an important objective. An adaptive approach would allow
students to relax after achieving success (or having good luck) but before
achieving mastery.

8.3.4 Multiple tries in assessment

In previous discussions we have assumed or asserted that assessment should be
done with multiple–try tests. Here we explain why.

First, it does not pose additional difficulty in task design and development.
We have emphasized that task assessment, motivation, etc. are maximized when
instances of the same “test” are used for both practice and assessment. This
means it must provide many equivalent instances, etc. and therefore be suitable
for multiple-try use whether it is used that way or not.

The reason multiple tries are necessary is that a tight practice–assessment
linkage has drawbacks and allowing multiple tries addresses or compensates for
these drawbacks.

• Learning tasks must be harder than traditional assessments and computer
grading makes partial credit impossible. As tests they often strike tradi-
tional teachers as seriously unrealistic. Students do better than might be
expected because goals and standards are clear and there are no surprises.
Nonetheless there is a lot of exposure to minor errors, and being able to
retake the test compensates for this.

• Some instances are a bit harder than others, or a student might find one
variation particularly challenging. The recourse is to retake the test.

• Multiple tries provide opportunities and incentives for improvement. It
often happens that after a test a student realizes that he could do better
with relatively little effort or more care (“made a dumb error”). Having
another try makes this an opportunity rather than just a frustration. If
it is reasonably easy to retake then some students will do it even if they
already have a satisfactory grade.

• Some students cannot resist peeking at answers and hints available in prac-
tice tests, and use them as crutches rather than learning aids. Roughly
speaking they confuse “being able to do it” and “seeing how it is done”.
For these students proctored for–credit tests can provide enforced–discipline
practice. Fortunately this mostly effects students new to the system and
they grow out of it.
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8.3.5 Software generation

Our tasks are generated by software that writes problems directly rather than
taking them from a database. Problem–generating modules take parameters
that determine problem type, difficulty, etc. so a single module can provide a
number of problem types, and a very large number of instances of each type.
This has substantial advantages over the database approach:

• higher quality:

• greater flexibility and variety;

• much better control for balancing problem types and difficulty and ensur-
ing full coverage;

• better quality control and problem–specific diagnostic hints;

• straightforward upgrades; and

• very low maintenance costs after development. Currently our calculus
task–generating software has run for two years with almost no modifica-
tion.

Software that writes problems encodes subject knowledge and educational wis-
dom in a way that individual problems cannot. This is a big factor in making
tasks effective as learning guides and I do not believe this could be done satis-
factorily with a database–oriented system.

Encoded knowledge and wisdom accounts for low maintenance costs: once
the software is mature most adjustments can be made by modifying input pa-
rameters rather than modifying generator code. A less welcome consequence is
that development cost are likely to be high. This is discussed in §8.5.4 Devel-
opment.

8.3.6 High–stakes tests

There are now state–level K–12 math tests and some movement toward regional
or national tests. The way these tests are used to grade schools has forced a
teach-to-the-test response in many systems. However the tests currently in use
are poor as assessment instruments and very poor as learning guides, so no good
can come of this.

Bad high–stakes tests will undermine a task–based system. They both en-
courage a teach-to-the-test approach, even if for very different reasons, and if
there is a disconnect between the two the high–stakes test will win.

An ideal solution is to use the same system to generate course tasks and
high–stakes tests. This would be straightforward with the software problem–
generators described in the previous section. Benefits are:

• high–stakes tests of high quality and designed to support learning;
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• customization for state or local needs accomplished by customizing pa-
rameter settings rather than the entire test;

• synergy: motivation provided by course grades and high–stakes tests reen-
force rather than conflict; and

• enormous savings in construction of high–stakes tests. Currently these
are expensive and have to be redone every year. Yearly costs with the
software system would be negligible by comparison.

Details and other benefits are discussed in §8.5.4 Development.

8.3.7 Summary

Students see a typical learning task as a multiple–try test with practice versions
and various bells and whistles. But the objective is genuinely effective learning
when used in ways that seem natural to students, not just assessment. To be
successful the materials must meet different and much more demanding stan-
dards than needed for pure assessment. This section described requirements
imposed by the format and the ways students use the materials. The next
section describes requirements imposed by the way they are used in a course.

8.4 Course Design

This section discusses how tasks can be used in a course. After clarifying the
goals we begin with a stripped–down version. Possible enhancements are then
described. Much of the design is shaped by student psychology and behavior.
Resource constraints are discussed in the next section.

8.4.1 Not An Online Course

Our tasks are available online and some students use them as an online course.
Our goals are quite different from those of online courses, however.

Online courses do not have to count failures. An online can be considered
an outstanding success and make a lot of money even if it cannot be used by
50% of the target population.

Public schools do have to count failures. A school that “left behind” 50% of
it’s students would be considered a catastrophic failure.

Public colleges and universities are not so different. We may have selective
admission but only the most elite could restrict admission to students capable
of taking ambitious online courses. If the Math Emporium at Virginia Tech
discontinued help support I am sure we would have catastrophic failure rates.

The point is that helpers, supplementary lectures, and other features that
make this proposal complicated and difficult are consequences of our determi-
nation to make quality education accessible to all students, not just an elite.
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8.4.2 The Skeleton

Tasks, with their supporting resources, are the backbone of a task–oriented
course. A skeletal course needs some connective tissue but little else. In this
subsection we expand on this and explain why some traditional features can be
omitted without causing problems while others require adjustment. Topics are
course segments, grading, and high–level guides.

8.4.2.1 Segments

The course is divided into segments with a task (test) to be mastered in each
segment. The task can be taken for a grade during the segment and becomes
unavailable when the segment ends. There should be a makeup policy for tests
missed for legitimate reasons but it must be restrictive enough that students will
not use it to postpone work. Our calculus course is divided into six two–week
segments and a final exam. Considerations are:

• serious deadlines are necessary to keep students moving through the ma-
terial;

• there must be sufficiently many segments so that students can handle the
material covered in each; and

• there must be sufficiently few that each one is significant. Students cannot
afford to skip one, and can work up the motivation to tackle them.

For university students and our course, two–week segments seem to be a good
balance. At least a week is needed for the learning mechanisms and multiple
tries to work and too many tasks may overwhelm interest and motivation.

Two–week segments may be appropriate for grades 5–12 also. In practice
students relax in the first week and get down to work in the second. Task
orientation is more efficient in use of student time because they focus on their
own needs and choose the most effective resources. Traditional courses have
uniform assignments that everyone is supposed to do whether they need it or
not. The tradeoff is that tasks require more focus and active participation
and therefore more motivation. The consequence is that the second week in
a segment produces at least as much learning as two weeks in a traditional
program, but it also requires as much focus and motivation as two traditional
weeks. Trying to reduce the“inert” periods is likely to reduce engagement.

Another advantage of an easy week–hard week rhythm is that the relaxed
periods enable some sort of mental digestion or long–term memory formation.
This varies from person to person but there seem to be limits on how fast
humans can effectively absorb material like mathematics. Learning in individual
segments can be faster, but these need to be paced to avoid cumulative overload.

Class meetings could also be adapted to a two–week rhythm. Meetings could
be held in the first week, and the second week reserved for work in the lab and
testing. Two sections could then be run concurrently with a one–week shift:
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one would be in class while the other is in the lab. Other advantages of this
idea are discussed in §8.5.2.2 Classroom Teachers and §8.6.3 Tracked Courses.

Finally, there will be some students who need the whole two–week segment
to get the work done.

8.4.2.2 Grades

In a skeletal course the tasks and final exam are computer–graded and these
grades are the sole assessments in the course. There is no homework per se, no
quizzes, no extra credit, no dropped grades, and grades are not curved. These
will be discussed individually but there are two general points.

First, most of these practices are artifacts of the constraints of traditional
classrooms and in other settings their objectives are better achieved in other
ways.

Second, these practices reduce the connection between performance and
grades. But our context is a non–terminal course covering material needed
later, and test performance is a bottom–line measure of preparation for later
use. Disconnecting performance and grades undercuts course objectives.

In detail:

• Homework: Repetitive practice is vital for learning mathematics and this
is the traditional role of homework. Equally traditionally, students see it
more as busywork than mission–critical. They have to get credit to be
willing to do it. Standards tend to be relaxed so good grades are easy and
students see them as a buffer against bad test scores. Low standards may
be misleading: why should something that is acceptable on homework be
wrong on a test? Finally corrections to homework errors have minimal
impact. The student was not really engaged in the first place, genuine
difficulties are hidden among sloppy errors, and there is too much of it for
either the student or teacher to review carefully.

In a task–oriented course practice tests provide repetitive practice. Stu-
dents see work on practice tests as directly mission–related so they do it
voluntarily without credit and take it seriously. Standards are uniform.
Students make an effort to avoid or correct sloppy errors, and are engaged
so that when they do make an error they actually want to know how to
fix it.

The difference between “homework” and “practice test” is partly psycho-
logical, and reenforcing this is another reason practice tasks should be
authoritative guides to the assessment versions.

Most sections of our task–oriented calculus course do not require home-
work. Some teachers have been nervous about this and did require home-
work. It seems to have no effect on outcomes.

• Quizzes: The function of quizzes is to force students to stay engaged
and compel class attendance. In a task–oriented course students are sup-
posed to engage on their own schedule. There are problems with this, see
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e.g. “procrastination” below, but there are ways to address them that are
more consistent with the course design. Class meetings should be con-
sidered resources rather than the main show, and some students will not
need them. Rather than forcing attendance, students should be lured by
making classes efficient and useful as resources.

• Curves, extra credit, dropped grades: These practices undercut learning
in several ways. First, do teachers give grades, or do students earn grades?
Grade curves etc. are at the teacher’s discretion so when they are used the
answer is “give”. If enough students go limp the teacher will rescue them
with a curve. Scores can be appealed and grades negotiated so the focus
is often on the teacher as a potential patron, not on the material. I have
had students whose negotiation skills were far stronger than their study
skills.

The second problem with these practices is that they disconnect grades
from performance. We are discussing non–terminal courses so content and
standards are designed to support later work. Extra credit and dropping
low scores essentially enable students to skip part of the material, often
the most significant part. Grade curves lower performance standards on
the remaining material. The result is poorly prepared students. Generous
use can turn a non–terminal course into a terminal one.

To summarize: in the skeletal task–oriented course all assessments come from
computer–graded tests and expectations are made clear by practice versions. If
adjustments are impossible—grades are earned, not given—then students accept
these expectations and get to work. Even a hint that adjustments are possible
can damage motivation: as things get tough, when does negotiation become a
better bet than further work? This is particularly an issue with learning tasks
since they must be more difficult than traditional tests.

A final benefit of computer–assigned grades is that it improves student–
teacher relationships. In traditional classes there is a tension between the
teacher’s roles as evaluator and as mentor; here the teacher is completely on
the student’s side. Pure mentoring is also a more consistently positive and
enjoyable experience.

8.4.2.3 Reference Texts

Tasks guide learning at the segment level. Careful design can provide connec-
tions but for the most part high–level coherence must be provided other ways.
The most important of these is a hierarchical web–based document along the
lines of Wikipedia. This is the least well explored aspect of the proposal so
details are uncertain and will depend on level, but some general principles are
clear.

• Individual entries should be relatively self–contained and dependencies
made explicit with links. The reason is that they will be used at unpre-
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dictable times to aid recall or sharpen understanding, not be read linearly
like a classical textbook.

• Reference entries should not be designed for first–exposure learning be-
cause this would reduce usefulness for reference. Expanded presentations—
generally viewed only once—should be provided for that, though in fact a
great many students will be able to learn directly from the reference text.

• Entries are short, precise, and functional. In mathematical terms they
should be more like definitions than explanations.

• Examples, alternate viewpoints, etc. should be given but details should be
provided through links to avoid bloating and obscuring the main point.

• There should be no distractors: sidebars, cute graphics, video clips or
animations. These are doubtful in ordinary single–use texts and irritating
and counterproductive in reference texts.

• Graphic illustrations should be clearly relevant and carefully explained.

• The most detailed entries—twigs in the graph structure—typically relate
to task problems and are targets of links in diagnostic aids.

Current textbooks are inappropriate in nearly every way.

8.4.2.4 Presentations

Lectures or presentations should be provided. These will probably be videos
at higher levels and live in elementary grades. Videos should be linked to the
reference text and may also fit together in a linear sequence like a traditional
course.

• Presentations are considered part of the skeleton rather an enrichment
because there are a significant number of students whose primary learning
modes are best addressed this way. At higher levels most of them can
survive without this support but the benefits far outweigh costs.

• Presentations generally will be viewed only once; after that most students
will use the reference text. Consequently the text should be developed
first and presentations coordinated with it.

• Presentations duplicate some low–level material available through tasks
so students who find tasks more efficient will tend to skip them.

Introducing tasks as the evaluation component of a traditional course seems
to be the best way to modify an existing curriculum. Our most–ambitious task–
oriented course is evolving this way and still offers traditional lectures. We have
other courses that work satisfactorily with online texts and presentations instead
of class meetings but most of these are terminal or near–terminal, and some have
content compromises, so their materials may not be good models.
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8.4.3 Student behavior

Some behaviors are addressed differently in a task–oriented course. Here we
discuss procrastination and disruption.

8.4.3.1 Procrastination

The need to combat procrastination has driven development of the main fea-
tures of standard courses: homework, quizzes, and periodic major tests. It is
apparently one of the key problems in education. Procrastination is difficult to
measure so it rarely figures in modern data–oriented studies, but it should be a
major concern for any proposal that involves changing course structure.

I was led to this realization by the data rather than being clever enough to
figure it out for myself. Multiple–try tests do provide an indicator of procras-
tination: waiting until the very end of the segment to take the test for credit.
Students who did this had importantly lower scores than either students in gen-
eral or the same students on tests started earlier. There was enough data to
reveal many statistically significant correlations but this was by far the most
important and the only one that clearly required action.

The intent in a task–oriented course is that work should be organized and
initiated by students, and standard anti–procrastination measures would work
against this. Instead we use psychological countermeasures. They work for us
but we have no great confidence that they will be sufficient in other contexts.

• Impending Doom: In this approach the number of times a task can be
taken for credit goes down as the deadline approaches. There is a max-
imum of two tries a day, and only one on the last day. Thus someone
starting two days before the last could take the test five times, starting
one day before allows three tries, and this goes down to one at the end. In
practice many students take the test only once and very few take it more
than three times. Nonetheless the steady evaporation of opportunity does
provide enough motivation to greatly reduce the grade disparity.

There is a subtle point here. The Impending Doom strategy reduces the
grade disparity more than it reduces the number of students waiting until
the end. This and other factors suggest (but don’t prove) that there is
a sub-population—perhaps 10%—who either work effectively under pres-
sure or already know the material, and waiting until the end has no disad-
vantage for them. This illustrates the importance of identifying the real
problem (grade disparity) rather than focusing on an easily–measured cor-
relate (waiting until the end). Countermeasures focused on the correlate
might actually be counterproductive for some students.

• Preemptive Strike: This strategy requires the test to be taken for credit
in the first few days of the segment. The penalty for missing it might
be a 10% reduction in whatever score is finally earned. One objective is
to ensure an early start on task assessment, at least at the subconscious
level.
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Another objective is to provide a default grade. Officially no one cares
about the score because in the end only the best score counts. Generally
scores will be bad. The psychological difference is that as the end ap-
proaches students have to think about fixing a bad grade, rather than the
more abstract idea that they should allow time to fix a grade if it turns
out bad.

We have not used the Preemptive Strike strategy, but plan to try it in the
near future.

8.4.3.2 Disruption

Attentive students are easy to teach. A few obviously inattentive students in
a class can noticeably pollute the learning environment. One actively disrup-
tive student can degrade the environment enough to make real learning very
difficult. Practicing teachers know this and disruption is easy to measure but—
incredibly—it goes almost unmentioned in the educational research literature1.
Some educational approaches, the Discovery method for example, are quite vul-
nerable to disruption and descriptions really should include warnings about this.

A skleletal task–oriented course is relatively insensitive to disruption. Group
activities such as lectures are optional so disinterested students generally don’t
come, and there no reason not to ask a disruptive student to leave. The most
important point, however, is that computer–side help is one-on-one and initiated
by the student. Even students who would be tempted to disrupt a group activity
will be attentive in a help situation.

I have worked with students who were very reluctant to ask for help and were
incredulous that they could get genuinely interested help without being scolded
or put down in some way. I expect most of their interactions with teachers had
involved behavior control, and posturing and one-upsmanship may have played
a large role in peer interactions. I believe that the complete separation of help
and evaluation was also important. In any case watching these students bloom
in private one-on-one help sesssions is very rewarding.

8.4.4 Beyond the Skeleton

The skeletal course is the minimum needed to get satisfactory results and major
features are described in the previous section. Some issues are unclear, need-
ing more experience and probably depending on level and what is considered
“satisfactory”. Here we touch on these and some possibilities that are beneficial
but not part of the skeleton. It is important that additions be efficient in use of
student time, or optional; see §8.6 Educational Opportunities.

1There was a study reporting that disruptive students have essentially the same long–term
outcomes as well–behaved students. In other words they don’t disrupt their own learning any
more than they disrupt the learning of others. The more important question of how much
they disrupt others’ learning was not addressed!
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8.4.4.1 Class meetings

Traditional class meetings have been discussed in several places in this essay and
their role remains unclear. A full course of traditional class meetings has to be
considered beyond the skeleton for economic reasons. Abbreviated versions are
feasible, see [link to economics]. It is hard to imagine traditional classes persist-
ing long into the twenty–first century something along these lines is probably
necessary.

Some of our computer–based courses began with optional class meetings that
were later discontinued. A few students attended regularly but the benefits did
not seem to justify the expense and dropping them did not cause significant
problems. Our most ambitious task–oriented course has lectures but this is
partly because we are not willing to run the risk of lower outcomes if they are
dropped.

8.4.4.2 Group activities

The context is small groups of students working together with little or no su-
pervision. Topics are benefits, organization, and credit. Benefits include:

• Communication skills: communication has to be practiced to be learned.
Computer–based courses currently do not support this. Traditional courses
don’t do much better. Teachers know what is to be communicated so fre-
quently accept incoherent clues rather than requiring precision. Peer-to-
peer communication requires precision to be successful.

• Conceptual skills: asking for help with a problem requires isolating and
articulating the difficulty, and providing an answer requires isolating and
articulating the solution. Greater care is needed when the exchange is
between peers, and both parties benefit.

• Peer help: this is another way to describe the previous point.

• Social support: social interactions are very important to most students
and this reenforces almost anything done in groups. We want to take
advantage of this.

Our own evidence for the benefits of group work is mostly negative: students
who have serious trouble are almost never part of a study group. Similarly when
group projects are assigned there are almost always students who, for one reason
or another, end up working alone. They seem to be significantly less successful,
and consistently enough that it seems reasonable to attribute this to lack of
group support rather than lack of individual ability.

Key questions are: how to get students to participate in group work; and
what to expect from it. The two main approaches differ in grade credit.

• For credit: Participation is forced so is almost universal. Outcomes are oc-
casionally impressive but vary widely and effective assessment is expensive.
Groups that are not homogeneous tend to be dominated by the student
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who is most capable, best prepared, or most ambitious. In other words
tension connected with getting a grade tends to overwhelm the beneficial
mechanisms.

We developed assessment methods that ensured group projects were a
learning experience for the non–dominant students, but these were so ex-
pensive (in faculty time) that they could not be sustained. Further, we
could not require performance at a level that would enable us to rely on
learning in these activities. As a result any significant content had to be
duplicated elsewhere, and again this was too expensive to sustain.

• Without credit: Voluntary study groups are probably more effective than
for–credit and cost very little, so they win cost/benefit comparisons hands
down. The problem is getting students to participate.

The strategy is to make it as convenient as possible and hope that benefits
and social factors sustain it. Providing convenient places and times for
group work is important. Having faculty available for brief help interven-
tions (not tutoring) would be valuable. Internet–dating or Facebook–type
software designed to connect people with common interests might help
form compatible groups. Making it a standard part of a curriculum would
probably lead to high participation because students who once find it
helpful are likely to continue.

8.4.5 Summary

In previous sections we saw that careful task design, and supporting resources
including helpers and linked web materials, are necessary for the approach to
work. The point here is that these seem to be sufficient for a workable skeletal
course. There are issues that need to be further explored and valuable additions
that would cost little, but the basic plan seems to be in place.

8.5 Resource Requirements

Inadequate resources are a grim reality in education and a potential killer for
new programs. Ongoing costs are discussed in concrete, immediate terms:

• Teacher time: Demands on teacher time are often already high enough
to make the profession unattractive and promote burnout. Time must be
counted as a limited and valuable resource.

• Teacher expertise: Expertise of the current math teacher corps is lim-
ited and uneven, partly because many were not trained as math teachers.
Teacher training programs are not replacing losses in K–12 and economic
pressures are forcing wide use of adjuncts and graduate students for un-
dergraduate teaching. This is not going to change anytime soon and a
realistic plan must accept this.



8.5. RESOURCE REQUIREMENTS 189

• Personnel budgets: These are essentially fixed, and—because people with
more expertise are more expensive—enforce a tradeoff between time and
expertise. Teacher time can be maximized at the expense of expertise by
more, but less expert, teachers, or vice versa.

• Student time: This must be considered a valuable resource. Students
resent things they perceive to be a waste of time, and as they grow older
they become more consciously resentful and less tolerant. Conversely, it
is easier to engage students in time–efficient learning and more can be
accomplished. See §8.6 Educational Opportunities for discussion.

• Facilities and equipment: task–based learning requires a large computer
lab.

The question is: can a task–oriented program stay within current budgets for
these resources and get good results? Our task–oriented course actually costs
less than a traditional course so the answer is probably “yes”, but getting it to
work may be tricky.

The next section explains why worrying about budgets is important. The
following sections discuss costs of operation, startup, and development.

8.5.1 Increased resources are not an option

Educational cost accounting is not required by educational grants and is almost
never mentioned in research papers. New approaches tend to be generously
subsidized during development and would be far over–budget in any real–life
setting. Two justifications are offered for this: first, if something can really
be proved to be better then people will pay more for it. Second, the objective
of this kind of research is proof-of-concept and cost–effective implementation is
someone else’s job.

I believe it is vital to consider costs from the beginning. An education plan
that depends on additional resources is like a business plan that depends on
winning a lottery: it might happen but no serious proposal should count on it.
The current K–12 situation is actually worse because the No Child Left Behind
strategy forces concentration of resources on failing students and subjects. If a
method works well enough that most students pass then it becomes a target for
resource reduction.

Dodging the resource issue often leads to concepts that cannot be made
cost–effective. The New Math of the 1960s was a great concept and worked
fine when taught by professional mathematicians. The expertise requirements
were far over budget and the program crashed and burned when it collided
with reality. Some of the proposals for Discovery learning also depend on high
expertise. Are they re–inventing the flat tire?

In other cases costs forced out novelty and implementations shared only a
name and some materials with the research methodology. Persistence of the
name gives a way to save face and avoid admitting failure, but it should be
dishonest to claim success.
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The most insidious problems come from compromises needed to stay within
budget. For example “enriching” a course means adding something. If nothing
is taken out then the result will always be more expensive than before and
usually over–budget. Computer–enhancing a course places significant demands
on time and expertise. To stay within budget some of the earlier content is
typically replaced with “learning to use computers” as a course goal. But the
lost content may be needed later and the computer proficiency gained is usually
poor.

The big challenge in educational innovation is to do better with the same or
fewer resources. Ignoring this leads to failure in one way or another.

8.5.2 Operating expenses

Primary operating expenses for a task–oriented program are helpers and class-
room teachers. There are facility and equipment needs but these may be shared
with other programs and may come from different budgets.

8.5.2.1 Helpers

Helpers are the major new expense. It is important to have enough helpers to
provide real–time help to students working at computers. The tradeoff is that
good helping requires far less expertise than traditional teaching. Most of our
helpers are undergraduate or graduate students, or instructors. Regular faculty
are simply too expensive. Faculty can be used to oversee and provide backup
for helpers because this leverages their expertise enough to justify the expense.

In K–12 qualified junior and senior students should make excellent helpers
and will themselves benefit from the experience. However this should be a paid
position because it really is a job. Some training and experience are needed,
and success of the program depends on them showing up reliably for a whole
semester or year. See §8.2.4.2 Help Opportunities.

8.5.2.2 Classroom Teachers

Costs in this category must be reduced to balance the cost of helpers.
There are immediate savings in teacher time because the task system pro-

vides assessment and class administration. No more grading. This does not
translate into systems savings unless the student/teacher ratio is increased, ei-
ther by increasing class size or class numbers.

Task–based sections in our university course usually have three to five times
as many students as traditional sections and this alone pays for helpers and
leaves a tidy net savings. Teachers don’t mind because there is no grading.
It works better for students than usual monster courses because students who
use the tasks as online courses don’t come, and attendance drops back toward
traditional numbers.

In a school situation it might be better to increase class numbers than class
sizes. For instance when two–week segments are used, see §8.4.2.1 Segments,
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class meetings could be held in the first week and the second used for indepen-
dent work in the lab and taking tests. If the schedule of another such class
is shifted by a week then whenever one is meeting in a classroom the other
is working independently. A single teacher could handle both classes, again
reasonable because there is no grading. This effectively doubles the acceptable
student/teacher ratio, or equivalently halves the number of fully–qualified teach-
ers needed. This would not really make half the personnel budget available for
helpers, but it should suggest that the idea is workable.

8.5.2.3 Facilities and Equipment

The main facility requirement is a large computer lab where students can work
with the support of helpers, and take proctored tests. In most instances space
and computers will both be available and the main issue will be configuration.
In particular, a single large area is significantly more efficient than several areas
with the same number of machines due to the way help effectiveness scales with
size.

We have also found that having the area comfortable, attractive, and free of
distractions is helpful. An investment in decor and the presence of helpers sends
a strong message about expectations and the importance of learning. Folding
tables in a gymnasium might send the opposite message.

8.5.2.4 Student time

For reasons explained in other sections this approach should yield significant
savings in student time. Student time is not usually valued or measured but
this is the key to better outcomes. This is explained in §8.6 Educational Op-
portunities.

8.5.3 Startup

Startup expenses are costs incurred in each system when the program is first
introduced. We have not participated in a startup other than our own so much of
the following is extracted from our experience minus the false starts and groping
in the dark. College–level startups are discussed in Economics of Computer–
Based Education so we concentrate on K–12 here.

8.5.3.1 Begin with tests

The ideal changeover begins with use of task–generating software to produce
high–stakes tests, and making related tasks available as study guides. The
tasks would quickly and naturally become important course materials.

The next step is to use tasks as course assessments. Students and teachers
should be comfortable with this: the tasks are obviously mission–related in a
teach-to-the-test way because they have the same source as high-stakes tests
and are designed to support it. Courses would not depend on them functioning
as learning environments and all the usual practices (homework etc.) could

http://www.math.vt.edu/people/quinn/education
http://www.math.vt.edu/people/quinn/education
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continue. In particular they would not be supported by helpers. Many students
will find the learning features useful, however, and teachers are likely to find
themselves doing a fair amount of what amounts to helping.

The final step is to change over to task–oriented courses with computer labs,
helpers, modified class schedules, maybe tracks, etc. If tasks have already been
in use as assessments for a year or so then the new plan should more-or-less make
sense to students and teachers and educational dislocations should be minimized.
This would allow focus on organizational and institutional dislocations, which
is good because they will be plentiful.

8.5.3.2 All at once

Our experience, and my best advice to a school planning a changeover in their
math offerings, is that it is very important to do as much as possible all at once.
There will be a chaotic period but it will settle down and work. An attempt to
phase it in over time will significantly increase difficulty and aggravation in the
long run and greatly increase risk of failure.

• A phased change will be thought of as an experiment that might be can-
celled. People opposed to the idea will attack vigorously, trying to kill
it before it gets established. There will be instances where this can’t be
resisted.

• The people directly involved won’t be fully committed: why knock yourself
out if it might get cancelled?

• An experimental program is a lightning rod for complaints from students
and parents even if they aren’t relevant to the program.

An obvious full commitment from the beginning minimizes these problems.
Another problem is that parts of the program, particularly help, depend on

economies of scale.

• A small–scale pilot program is likely to be over–budget, or unsatisfactory
because it is under–funded, even if a full–scale program would succeed.

• There will be a great temptation to support a small–scale startup with a
small computer lab, and add additional labs as the program grows. This
can be a killer. Testing and computer–side help work best if everything
takes place in a single large lab. Using several smaller labs significantly
increases cost, multiplies problems, and increases the risk of breakdown
and failure.

See the essay Economics of Computer–Based Math Education for a discussion
of scale–dependence.

http://www.math.vt.edu/people/quinn/education/
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8.5.3.3 Preparation and support

The first startups will be breaking new ground. After that there should be
resources to make program conversions easier if not routine:

• Training videos, manuals, instructions, and specific data on lab size and
help staffing requirements;

• Seminars and summer programs; and

• opportunities to spend time in functioning facilities.

We argue in §8.5.4.1 Not Commercial that software development should not be
a commercial undertaking. This argument does not apply here: a business could
offer a range of assistance including consulting, products like those described
above, and computer–lab setups. They might also offer computer services such
as test and course administration, as long as they don’t try to commercialize
content software.

8.5.4 Development

Initial development involves development of task–generating software and sup-
porting materials and refining them with feedback from field testing. Reasons
for using software rather than a problem–database approach are discussed in
§8.3.5 Software Generation, but one is that full development need only be done
once. Maintenance and refinement should continue indefinitely but are relatively
inexpensive.

8.5.4.1 Not Commercial

High–stakes state tests are usually contracted out for commercial implementa-
tion, the SAT is a commercial test, and while the College Board is nominally
nonprofit their tests are either developed by commercial subcontractors or in-
ternally in the same closely–held way. There are widespread and fully justified
concerns about counterproductive effects of these tests. There is much more at
stake with learning tasks than with assessment and no basis for thinking that
this approach would be any more successful.

In short, it would be inappropriate to outsource a key part of our educational
system. Development must be driven by concern for outcomes rather than
profits, and everyone in the mathematical and educational communities must
be able to participate in feedback and refinement.

Work on the first draft could be organized by a non–profit group, educa-
tional institution or professional society. Large open software projects such
as linux, wikipedia and tex are useful models for subsequent maintenance and
development.
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8.5.4.2 Develop for the top

Task–generating software must be designed to work for the highest–level version
of the course that might be offered.

• Difficulty and coverage can always be reduced by changing parameter
settings, including, for instance, multiple–choice answers instead of free–
response.

• Designing for the highest level requires the deepest understanding of learn-
ing and mathematical structure. In particular it requires finding ways to
make abstract understanding directly useful in problem–solving, as it is
for professional mathematicians.

• I believe we will find that highest–quality task design will enable all stu-
dents to go further than we might currently imagine.

Recall that for non–terminal courses “high quality” and “high level” are largely
defined in terms of preparation for later courses. Consequences are:

• “highest” quality requires understanding how material will be used at least
through the second year of college calculus; and

• for best results the whole development from at least fifth grade through
the second year of college calculus should be thought of as a unit and
outlined before specifications for any level are finalized. Ideally it would
be developed as a unit without grade levels hard–wired in the program.
Local school systems could then decide where to place divisions to best
meet their needs and there would still be general coherence in overall
programs.

Finally really high quality would make “Profoundly Gifted” threads possible in
tracked courses, see §8.6.3 Tracked Courses.

8.5.4.3 Expertise required

High–quality task design requires profound subject mastery, analytical ability,
and educational wisdom.

• Database–oriented test developers often recruit students or math BAs to
write or check problems. We have tried graduate students, instructors
and others but only a few senior professors with records of original math-
ematical research and extensive programming experience have been really
successful with task design.

• One of the hardest lessons has been that classroom–oriented educational
expertise is almost irrelevant. Knowing how to teach, it turns out, is very
different from knowing how students learn in a student–directed environ-
ment. Experience with such an environment, for instance as a computer–
side helper, may well be necessary.
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To expand on the first point, this is not just a matter of skills. Single problems
can, at best, encode wisdom and expertise at the undergraduate or BA level.
Software that generates problems can encode wisdom and expertise at any level.
In a real sense students are being taught by the people who develop the task–
generating software. Their contributions are incredibly highly leveraged, so it
is vital to do the absolute best possible job.

To expand on the second point, I had been teaching for about 25 years
when I started working with computer–based learning in the Math Emporium.
I had lots of ideas, plans and expectations based on my classroom experience.
They were all wrong and many of them were counter–productive. Watching and
working with students slowly disabused me of many preconceptions and I doubt
this process is finished. Outstanding teachers heavily invested in classroom
expertise have been—so far—unable to make this transition.

8.5.4.4 Support for development

First we consider resources needed. For perspective consider that this under-
taking would be comparable to development of a web browser, search engine, or
high–performance database system. How would this be approached profession-
ally? How would a major software company organize such an undertaking, and
what resources would they consider necessary to ensure success?

This program would require at least a few experts whose regular salaries are
over $100,000 and a specialized support staff. Careful recruiting and help from
volunteers should keep the total well below the usual cost of a major commercial
software development program, but it will still be a lot of money for an education
project.

I have argued that software development must be undertaken as a not-for-
profit activity. These are usually supported by grants from private foundations
or government agencies and some of these grants are in the multi–million dollar
range. However this is not likely to help with a task–generation development
project.

• Grant applications are reviewed by education professionals with expertise
grounded in classroom instruction. These experts tend to find the ideas
advanced here counterintuitive and unconvincing if not actually repulsive,
and are unlikely to support funding.

• The funding needs of this project do not fit the standard mold. Large
education grants are multi–year, expected to involve many partners and
collaborators, and require elaborate, costly, and for us irrelevant, assess-
ment. The pie is so divided that it provides encouragement rather than
full support.

In principle state departments of education could be a source of support for
the K–12 portion. A software system that generates high–stakes math tests
could save tens if not hundreds of millions of dollars each year. This is inde-
pendent of any educational benefits so they would not have to believe outcomes
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would improve for the investment to make sense. If the learning tasks etc. pro-
vided as study guides did improved outcomes it would be pure gravy.

Unfortunately state departments of education usually have to scrape to get
the next round of tests ready and are not in a position to invest in the future.
Further, innovation tends to be punished. If they do things in the same old
way and something goes wrong then they can’t be blamed. If they are at all
adventurous and something goes wrong, e.g. scores don’t go up enough to avoid
sanctions, they get the blame even if the traditional approach would have done
worse.

Finally, attempts at collaboration among states tend to founder on questions
of local control. State departments would have to be convinced that tinkering
with input parameters would given them adequate control before they could
give up control over software design.

8.5.5 Summary

If it is done well then initial development of software for generating tasks only
needs to be done once to enable long–term nationwide (and international) use.
Costs would be large for a single education project but negligible compared to
long–term savings on high–stakes alone, and truly trivial compared to potential
benefits of improved math education. Even so there seems to be no straightfor-
ward way to get it started.

If the development gets done, and if the system is used for high–stakes test-
ing, then in K–12 the rest of the program can develop through relatively small
steps. The largest of these steps is starting up computer labs with help pro-
grams. This has immediate benefits in terms of teacher expertise and involving
students in education, so once a good model is established this should also
become routine.

A key point is that operational expenses are no greater than traditional
programs. Better outcomes would be a consequence of high quality of the initial
development and reorganization of resources. They would not require additional
resources or sacrifices in other parts of the curriculum.

8.6 Educational Opportunities

Our goal is to improve outcomes at all performance levels. This is tricky: most
approaches trade offs improvement at one level for losses at another. To explain
why, and how to avoid it, we need an understanding of student behavior.

8.6.1 A Behavioral Model

The best first–approximation description I have found is: students have time
budgets and grade targets, and work until one or the other is met. If they run
out of time they accept a lower grade. If they reach the target grade, they quit
and take more free time. I wish it were otherwise but this explains the data.
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This model explains the usual achievement/failure tradeoff. If standards
are raised then students who are not over–budget in time will learn more to
achieve their target grades. But students who are at or over their time budgets
will accept lower grades. Learning by stronger students rises but grades fall.
Reducing standards has the opposite effect: students under–budget in time
work less to get their target grade and enjoy more free time, while previously
over–budget students may get higher grades. Lowering standards reduces the
spread in learning and increases grades.

This achievement/failure analysis assumes a fixed educational method. Now
suppose standards are held fixed and methods are changed. A more efficient
method raises grades only of students who would have been slightly over their
time budgets; others take a payoff in free time. Less–efficient methods cause
a hit in free time but changes grades only for students who now go over their
time budgets. Real life is more complicated but this leads us to expect—to a
first approximation—that methodology will have only marginal effect on out-
comes. This explains the “no-significant-difference” phenomenon often seen in
education research.

Two important conclusions:

• The only sure way to improve outcomes, particularly for the best students,
is to raise expectations. The challenge for educators is therefore “how can
we raise expectations without unacceptable increases in failure rates?”

• The main benefit of a more effective method is likely to be reduced de-
mands on student time. Time has to be measured or inferred to effectively
compare methods; outcomes alone won’t do it.

The second conclusion suggests a solution to the first.

8.6.2 The Main Strategy

In a nutshell the idea is to switch to more efficient learning methods and more-
or-less simultaneously raise expectations, with the goal of holding demands on
student time constant. When time demands are unchanged grades should also
be largely unchanged, but learning outcomes will improve.

Efficiency has been a recurrent theme in our description of the task–oriented
approach. For instance students choose among, or combine, resources to fit their
individual learning styles. Real–time help with difficulties is an enormous time–
saver. The main savings, however, come from letting students skip what they
don’t need. Uniform homework assignments require more than most students
need, and for these students the excess is busywork. For some students many
class meetings are a waste of time.

Note that the strongest students will see the greatest time savings in this
approach. This means expectations for top grades can be raised quite a lot
without reducing grade outcomes.
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8.6.3 Tracked Courses

Tracked courses offer another strategy for improving outcomes. We outline the
idea; see the essay Tracks in a math course for more detail.

The context is a pair of courses that cover similar material but at different
levels: say “standard” and “advanced”. The usual approach is to sort students
by interest, ability, and preparation, for placement in the two courses. But at
least 10% and frequently 20% will be in the wrong course. Students who get
D or F in Advanced course should have been in Standard, and many Standard
students who get an A should have been in Advanced. This is unavoidable, and
in particular better placement tests will not fix it.

The idea is to combine the courses and let students choose their own level.
Students who do well on Advanced tests stay in that track. Students who
take Advanced tests and don’t do well are offered the choice of retaking them
and doing better or going into the Standard track. Students who begin in
the Standard track but find the material more accessible than they expected
have a risk–free upgrade path. The course for which they receive credit is not
determined until the end of the term.

If class meetings are offered then courses would start with one-size-fits-all
presentations. As students settle into tracks different sections could specialize
to one or the other track and students could switch sections to get appropriate
lectures. If the alternate–week schedule (§8.4.2.1 Segments) is used, and the two
parallel sections specialize to different levels, then students could switch sections
simply by moving to the parallel section. Times, teachers, and classrooms would
be the same.

There could even be choices offered at the end of the course: a C in the
Advanced track could be converted to an A in the Standard track. Is a higher
GPA more important than getting a prerequisite for a technical career? The
student decides. In any case no one would get a D or F in the Advanced track,
so expectations could be kept high without forcing up failure rates.

This scheme is too time–intensive for use in traditional classes with current
student/teacher ratios. It would be easy to implement in a task–oriented course:

• grades and course administration are managed by computer so choices and
transitions could be managed automatically; and

• the same software could generate tasks for several tracks by appropriately
adjusting input parameters.

Finally, it would give quite a boost to the development of first–class scientists
and engineers if a “Profoundly Gifted” track could be offered to the very best
students.

8.6.4 Summary

A task–oriented program offers several ways to raise expectations and improve
learning without increasing failures. One exploits the student time made avail-
able by efficiency of the method. Another exploits computer management rather

http://www.math.vt.edu/people/quinn/education
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than any virtue of the method to provide separate levels. It is significant that
both rely on providing students more choice and control over their learning.
In one case this enables them to optimize the process for their individual pref-
erences and needs, in the other case it gives them more input into choice of
level.

8.7 Conclusions

The proposal is to exploit natural tendencies of students, and practices widely
forced on teachers by high–stakes tests, by making “teach-to-the-test” really
work. Experience with college–level courses indicates that test–like “learning
tasks” with appropriate support could provide better outcomes without draw-
backs such as higher failure rates.

The questions considered in detail are: how would such a system work in real
practice; can we get there from here; and can we afford it? There are plenty of
pitfalls, most of them beyond the ken of usual educational studies, and the way
through them is a bit torturous, but there does seem to be one. In particular it
should require no more resources than traditional classroom instruction and in
large systems may actually reduce costs.

Putting everything together gives a best–case scenario for K–12:

• development of task–generating software and reference texts as a source
of high–quality high–stakes state math tests;

• tasks and supporting material provided as study guides for the tests;

• teachers find tasks to be effective learning guides and, over time and at-
tracted by a reduction in grading, use them as course assessments; and
then

• school systems realize that by going to a teacher/helper system they can
save money and leverage the effectiveness of fully–qualified teachers.

The first step is the most problematic. If that can be overcome then the others
provide a way to make the change in reasonable, well–motivated and individually
sensible steps.
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Chapter 9

Downstream Evaluation of
a Task–Oriented Calculus
Course

Data for the study finally received October 28, 2009. We hope to complete most
of the analysis by the end of December.
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Chapter 10

Beneficial high–stakes math
tests: an example

November 2008

Introduction

High–stakes tests influence teaching and learning. When learning is poor they
provide discipline and motivation for improvement. When learning is good
the influence tends to be bad because the focus shifts from learning to test
performance. Recent widespread introduction of high–stakes tests is, in effect,
a judgement call: the general level of learning is so poor that the discipline
enforced by tests will outweigh bad effects in the few previously–good cases.
Roughly speaking we accept a cap on the top to get a floor under the bottom1.

The thesis here is that high stakes tests—when very carefully done—can
influence teaching and learning in positive ways. Counterproductive influences
are the result of poor tests, not of high–stakes tests per se.

Beneficial high–stakes tests require a completely different approach to test-
ing. Every aspect, from how the tests are given, to problem design, down to the
level of computer code, must be driven by sophisticated educational and math-
ematical wisdom. But this wisdom must be correct in an almost mathematical
sense, and in particular not determined by conventional wisdom or ideological
convictions.

10.0.1 Outline

To illustrate this thesis we give an example worked out in detail.

• First we identify reasons that students taught with calculators have symbolic-
reasoning deficits: for instance calculator routines conceal mathematical

1See The K–12 math test conundrum for a brief discussion
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structure. But then we discover that by–hand arithmetic actually has the
same problems to a lesser degree.

• We suggest a change in the way problems are worked—with or without
calculators—that would address this.

• We describe a modification to test design that would make the new ap-
proach directly effective for test–taking. This provides motivation for
teachers and students, though the motivation provided by a yearly test
would be a bit remote.

• The envisioned test–generating system could also provide course tests and
plentiful practice materials, adjusted to be appropriate for different levels
and locales. This would give constant reenforcement and feedback and
quickly spread improvements.

• We then discuss high–level issues in implementing such a test system. One
is that it would spread mistakes just as quickly as improvements.

• For this and other reasons content for such a system must developed in
an open and non–commercial way that can respond quickly to feedback
and can draw on the wisdom of the entire community. Large–scale test
administration might still be a commercial activity.

• This particular suggestion requires a change in the functionality of tests
as well as in content. We describe how to use modern electronic formats
and programming tools to achieve this.

• We hope to have sample tests with these features available at the Joint
Mathematics Meeting in Washington DC January 4–8, 2009.

• Implementing this change would ideally lead to significant changes in the
way K–12 math is taught, including systematic use of parentheses from
the very beginning of arithmetic.

• The discussion of instructional changes also illustrates use of web reference
materials for teacher support.

10.0.2 Other Issues

The discussion here is based on analysis of a single issue and many others will
have to be similarly understood to get a complete picture. For instance here
we see how to organize elementary material to set the stage for abstract and
symbolic reasoning but have not tried to work out how such reasoning should
be taught and tested. A few more examples:

• The analysis here focuses on single–step problems. How should multi–step
problems be handled?
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• Students taught with graphing calculators often have geometric–reasoning
deficits. What is behind this and how can it be avoided?

• Calculators have inadvertently caused serious problems and we are only
now beginning to recognize them and sort them out. Can we figure out
how to graduate to modern computer–algebra systems without having to
suffer through turbocharged versions of the same problems?

Fortunately these do not have to be tackled all at once. If our analyses are
based on thorough and accurate understanding of mathematical structure then
we can expect the solutions will fit together and reenforce.

10.0.3 Web Resources

Web resources can help explain and support instructional change. This is illus-
trated with links to the web site of the American Mathematical Society Working
Group on Preparation for Technical Careers, abbreviated AMSTC.

10.1 Analysis of the Problem

A specific word problem is used to illustrate how calculators, and to a lesser
extent traditional approaches, fail to support development of higher–level rea-
soning. The natural mathematical view suggests a remedy but also makes clear
some of the difficulties that will be encountered.

10.1.1 A Sample Test Question

The example is:

Problem Three children collect acorns for an art project. Dick finds 7 acorns;
Jane finds 13; and Warren amasses 40 acorns. The teacher puts all the acorns
in a bowl and then divides them evenly among the three children. How many
acorns does each child have for the project?

10.1.2 Mathematical approach

A mathematician would write (7 + 13 + 40)/3.
The structure of the situation is clearly reflected in the structure of the

expression and it is a small step to write ( # + # + # )/3, where # is used as
a placeholder for the numbers of acorns collected by a child. This abstraction
is easily accessible and will have a subliminal influence even if it is not made
explicit.

The generalization to an arbitrary number of children is conceptually easily
but the placeholder notation is unsatisfactory because it does not display the
linkage between the place and the child. To do this we use 1

n (A1+A2+· · ·+An).
The underlying structure is clearly the same as for three children so the only

http://amstechnicalcareers.wikidot.com/
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difficulty is with the notation, and this should seem reasonable because it solves
a problem (dangerous imprecision of the # formulation).

A more subtle feature of the notation 1
n (A1 +A2 + · · ·+An) is that the sum

(A1 +A2 + · · ·+An) is seen as a unit that can be manipulated even though the
operation has not been carried out. The best version, 1

nΣni=1Ai, builds on this
and can be made accessible if students are explicitly taught how to parse it and
read it out loud.

Finally the expression makes sense for any type A∗ that can be added and
then divided by an integer. Students who think of polynomials as a fancy sort
of numbers (as do mathematicians) will use exactly the same expression to find
the average of a collection of polynomials.

10.1.3 Calculator approach

The student presses keys 7, +, 13, +, to get 20, then 40, +, to get 60, then ÷,
3, =, to get 20.

This is an algorithm rather than an expression. Students easily see how to
generalize it to handle more cases but it does not explicitly display the math-
ematical structure and cannot be generalized or manipulated as an expression.
Further there is no notation for these algorithms so they must be remembered
rather than recorded. This makes it difficult to point out structural similarities
in work done at different times, or, better, have students recognize similarities
because the expressions have the same structure.

Calculator–trained students have to see polynomials as new and different
things. The structural similarity between integers and polynomials has been
hidden: numbers are algorithmically manipulated by calculator while symbols
require rules that seem strange and tedious because they have not already been
internalized, for instance through by–hand arithmetic. These students will have
difficulty seeing any similarity or connection at all between the solution of the
acorn problem and the average of a set of polynomials.

10.1.4 Traditional approach

Traditional students will write 7 + 13 + 40, but then encapsulate this as a unit
by carrying out the operation rather than with parentheses. They then divide
the sum, 60, by 3.

We now see the traditional approach as half–way between the mathematical
and calculator versions.

On the plus side the sum is seen as a unit as in the mathematical version.
It can be generalized to A1 + A2 + · · · + An and then to Σni=1Ai. By–hand
arithmetic provides a lot of hands–on experience with mathematical structure
(of addition and multiplication) so it has been internalized and this makes the
transition to symbols and polynomials relatively easy. After this the sum makes
sense for polynomials and other symbolic expressions.

On the negative side the full solution is still an algorithm rather than an
expression: division by 3 takes place after encapsulating the sum by evalua-
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tion rather than with parentheses. The unevaluated sum is not presented as
an object that can be manipulated. Students learn to approach problems by
alternating organization (setting up the sum or the division) and operations
(adding, dividing). This works in school math because problems are designed
to be worked this way but is counterproductive in the long run because it dis-
rupts mathematical structure and invites errors.

10.2 Diagnosis and a Remedy

We saw in the previous section that calculator–oriented math education thor-
oughly mixes the organizational and computational components of problem–
solving, and that this undercuts learning in a number of ways:

• It does not provide unevaluated arithmetic expressions that display mathe-
matical structure, provide templates for generalization and abstraction.See
AMSTC/Products of Sums for another example.

• These unevaluated expressions also aid in diagnosis of mistakes, see AM-
STC/Diagnostic Aids.

• It hides the functional similarity of numbers and symbolic expressions such
as polynomials.

• Mixing cognitively different tasks degrades both and increases error rates,
see AMSTC/Separation of Tasks.

We then saw that the traditional approach with by–hand arithmetic actually
has some of the same deficiencies and therefore also undercuts learning albeit
to a lesser degree. In other words calculators did not cause the current abstract
and symbolic reasoning deficits, but their use enabled expansion of bad practices
that worsened deficits that had been invisible.

One conclusion is that “go back to the old ways” is not a satisfactory solution:
we need a new approach that exploits this new understanding. For instance
complete comfort with parentheses seems to be vital but traditional elementary
math education has a parenthesis phobia, see AMSTC/Parentheses.

10.2.1 Remedy

The proposal is for teachers and tests to encourage students to separate the
organizational and computational components of problems by explicitly using
unprocessed intermediate expressions.

To clarify this we give an example.

10.2.2 Better Sample Question

We revise the word problem of §10.1.1 to illustrate how the remedy might be
implemented in a test, and give a variation for class use.

http://amstechnicalcareers.wikidot.com/teaching:products-of-sums
http://amstechnicalcareers.wikidot.com/teaching:diagnostic-aids
http://amstechnicalcareers.wikidot.com/teaching:diagnostic-aids
http://amstechnicalcareers.wikidot.com/teaching:task-separation
http://amstechnicalcareers.wikidot.com/teaching:parentheses


208 CHAPTER 10. BENEFICIAL HIGH–STAKES TESTS

10.2.2.1 Test Version

Three children collect acorns for an art project. Dick finds 7 acorns; Jane finds
13; and Warren amasses 40 acorns. The teacher puts all the acorns in a bowl
and then divides them evenly among the three children. Give an arithmetic
expression that evaluates to give the number of acorns each child has for the
project.

Problems like this must be explained and used with care:

• “Raw–output” expressions are not well defined, and there will be a great
many correct expressions, including the numerical outcome (20), that are
logically correct.

• For (machine) scoring purposes the expression is considered correct if it
evaluates to give the correct outcome. In other words the student only
has to set it up and the test will take care of the arithmetic. In §10.3.2
we suggest taking this literally: when an expression is entered the result
of evaluation is automatically displayed.

• The point is that the student’s best strategy is to do only the organiza-
tional component of the problem and enter the resulting expression with-
out doing any processing. This minimizes time and exposure to errors.

• The student’s best strategy therefore implements the proposed remedy:
organization and processing are separated and attention is focused on the
intermediate expression where structure etc. is displayed.

The test formulation is not immediately suitable for use outside a computer
test environment because the unevaluated expression is not well–defined and
cannot easily be checked for correctness. A class version could be:

10.2.2.2 Classroom Version

Three children collect acorns . . .

1. Set up an arithmetic expression that gives the number of acorns each child
has for the project, but don’t do any arithmetic.

2. Evaluate this expression.

An answer would be considered correct if the response to (1) is not obviously
bogus and has the right structure (in this case something like (# + # + #)/3),
and the number in (2) is correct. Otherwise it is considered incorrect:

• If the number is incorrect then the expression can be considered more
carefully. A correct expression indicates that there was a mistake in eval-
uation and more evaluation drill may be called for. An incorrect expression
suggests an error in setup.
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• Determining that the form of an expression is wrong relies on human
pattern–recognition skills. The instructions to students is that this part
of the answer is to be used for diagnosis when something goes wrong; see
AMSTC/Diagnostic Aids. If the expression is unsuitable for diagnosis
then the answer is unsatisfactory even if the number is right.

This last point goes against the idea that a correct number justifies everything,
but requiring an organizational and diagnostic step really is important. In
particular I believe that if students are consistently required to get the right raw
form then using calculators to do the evaluation should not cause problems.

10.3 Test Design and Implementation

§10.1 gives an analysis of a single issue of a whole constellation. Rather than
consider the issue in isolation we build on the analysis in Task–oriented Math
Education.

Test features already identified as useful are summarized in §10.3.1 and we
add to this those of §10.2.2.1, Better Sample Question. Specific format and
programming proposals are made in §10.3.3.

10.3.1 Learning Tasks

The analysis in Task–oriented Math Education suggests that test features should
include:

• Computer–based (presented and worked in an electronic format);

• Software–generated (not assembled from a database of problems);

• Multiple–try (many equivalent instances rather than static);

• Instances can be used for practice, and provide diagnostic aids, reference
links, etc. after scoring (designed as a learning environment);

We refer to tests with these features as “Learning Tasks” to emphasize that
learning, not assessment, is the primary objective.

10.3.2 Functionality

The example in §10.2.2.1 requires the following:

• a form box in which the student enters an arithmetic expression;

• an “Evaluate” button so that when it is activated:

• the result of evaluation appears in a different box, and

• when the test is scored the contents of these boxes is frozen (and correct
answers, diagnostic aids etc. appear).

http://amstechnicalcareers.wikidot.com/teaching:diagnostic-aids
http://www.math.vt.edu/people/quinn/education/taskoriented.pdf
http://www.math.vt.edu/people/quinn/education/taskoriented.pdf
http://www.math.vt.edu/people/quinn/education/taskoriented.pdf
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The evaluation appears in a different box so the expression can be preserved.
Further, if there is an error—missing parenthesis for example—an error message
should appear in the evaluation box. The expression can then be diagnosed,
edited, and re–evaluated.

10.3.3 Formats and Programming

We suggest formats that provide the functionality described above, and more.

10.3.3.1 Test Format

A test (or learning task) is an Adobe PDF document. PDF supports web links
and forms, and embedded javascript can be used to process or evaluate material
entered in form boxes. Javascript gives access to a wide range of mathematical
functions so the functionality described in the previous section is easily obtained.

Other benefits are:

• Tests can be self–scoring and fully functional via embedded javascript
without depending on a server or test system.

• For–credit tests generally will be linked to a test system for security and
recording grades, but other than this will have exactly the same function-
ality as a free–standing practice test.

• Answers and diagnostic aids, revealed when a test is scored, can also have
javascript functionality and can include web links to reference material.

• The content generating system is independent of for–credit administration
systems. Content should be provided through a single open–source or pub-
lic domain system, while security and database software for administration
might be commercial products offered by a number of companies.

10.3.3.2 Source Code

LATeX is an effective source code for functional PDF documents. It can be
compiled directly to PDF by the PDFTeX program2, or compiled to PostScript
and then Distilled to PDF.

• The hyperref package included in standard LATeX installations provides
intra–document and web linking, and basic support for HTML forms.

• The AcroTeX education bundle developed by D. P. Story provides further
support for HTML forms, and facilities for embedding document–level
javascript in a PDF document.

Story’s system actually provides packages for producing self–scoring PDF tests.
These are not flexible enough (off-the-shelf) to provide the functionality de-
scribed here, but almost all the work is done.

2This document was produced in this way.

http://www.math.uakron.edu/~dpstory/acrotex.html
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10.3.3.3 Producing Source Code

The problem generators used in the Math Emporium at Virginia Tech are writ-
ten in Mathematica. Current versions produce problem source code designed to
be processed by Mathematica and distributed as web pages from a server. Most
of them could be easily modified to produce LaTeX source code.

This means the technology and methodology for producing the source code
is, in a sense, already established. However this work is done in–house and
there is little publicly available material on it. A more problematic point is
that developing problem generators is a very high–level activity and requires
mathematical and educational sophistication.

10.3.4 Advanced Functionality

Eventually more functionality will be needed than can reasonably be provided
by javascript embedded in a PDF document. For instance multi–step problems
will require some sort of iterative computational support. This should be done
with a separate computational environment. The test would interact with the
environment to specify the appropriate level of functionality and receive output,
but would not itself provide the functionality. For a draft description of such a
computational environment see Student Computing in Mathematics: Interface
Design and Student Computing in Mathematics: Functionality

10.4 Conclusions

High–stakes tests may improve minimum competency but current tests influence
instruction in ways that depress achievement at only modestly higher levels.

In this article we worked through an example to explore what might be
involved in designing tests that would actually improve teaching and learning.
Our conclusion is that it is possible in principle, but getting it to work will be
very challenging.

This single example required:

• recognizing a subtle problem unnoticed or denied by large parts of the
education community;

• mathematically sophisticated analysis of causes that revealed an unex-
pected flaw in traditional elementary instruction;

• figuring out how a test might provide context and motivation to fix the
flaw;

• being willing to have every single aspect of testing, from administration
strategies to computer–based formats, driven by instructional needs;

• having sufficient experience and technical expertise to see how to imple-
ment the design.

http://www.math.vt.edu/people/quinn/education/studentComputing1.pdf
http://www.math.vt.edu/people/quinn/education/studentComputing1.pdf
http://www.math.vt.edu/people/quinn/education/studentComputing2.pdf
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The objective is not to get the test design exactly right—this is unrealistic—but
to get close enough that equally careful and sophisticated field–testing would
lead to an effective version. A less–sophisticated analysis or a priori constraints
on test design would lead to a system that no amount of field–testing could fix.



Chapter 11

Economics of
Computer–Based
Mathematics Education

Introduction

I taught a computer calculus course in 1975. Since then I have followed with
great interest other attempts to use computers, and participated in a number
of them, but nearly all were unsuccessful in the sense that they had faded away
within a few years.

For the last decade I have been privileged to work with one of the few really
successful programs and this perspective leads me to believe that the main
program–killer is economics, not difficulty with either computers or education.
Specifically:

• To be successful, a new instructional method must be less expensive (par-
ticularly in faculty time) than standard methods. Consequently, educa-
tional outcomes assessments are relevant only if economic constraints are
satisfied.

Many educators—and education funding agencies—strongly oppose this point
of view on philosophical grounds. Unfortunately—as people with business expe-
rience know well—it is a statement of fact, not a philosophical issue. Denying it
does not keep it from killing programs, it only keeps people from understanding
why they died. The objective here is not to argue that economic constraints are
a good thing but that we will not be successful until we accept them and learn
to work within them.

The basic point is that computer use, or any other innovation, has costs,
and these have to be balanced by savings elsewhere in the program.
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The Math Emporium

The Math Emporium at Virginia Tech1 was one of the first large math computer
learning facilities, and to the best of my knowledge is still the largest by a factor
of two. It serves over 6,000 students per semester with 550 computers and a
yearly help staff budget over half a million dollars. At the time of writing (2009)
it is in its thirteenth year of operation.

11.1 Educational Models

This section describes models for computer use in mathematics courses. These
are given roughly in order of efficiency, with a brief discussion of economic
factors. Numerical data is given in the next section.

11.1.1 On–line

The cheapest model is the on–line course. We do not use this because our expe-
rience is that dropout and failure rates are unacceptably high for a residential
state university. To put it another way, success with our student population,
as defined by institutional goals, depends heavily on easily–available, in–person
help. We have experimented with online help but found it to be more expensive
and significantly less effective. Presumably these problems will eventually be
overcome, but at present on–line and on–site computer courses are significantly
different in problems and goals and it is important to understand this.

11.1.2 Gigantic Lectures

We do not use gigantic sections with a single professor and flocks of cheap (un-
dergraduate) graders so there is no data for this model. A shortage of large lec-
ture halls is one reason, but we have tried it in the past and found the outcomes
to be unsatisfactory. Computer–based courses with flocks of undergraduates
working as computer–side helpers is cheaper and has better outcomes.

11.1.3 Computer–based

The first model currently in use is the computer–based course. The savings here
is the time or salary of the classroom teacher. Some of this is redirected into help,
and in fact students in our computer-based courses have access to more—and
more timely—one-on-one human help than students in our traditional classes.
We have precalculus, elementary linear algebra, and calculus for the life sciences
in this format.

1See http://www.emporium.vt.edu
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11.1.4 Computer–tested

The second model is a traditional lecture course but with all assessment done by
machine. The savings is the time the teacher or assistants would spend preparing
and grading tests, homework, etc. In a large–enrollment, multi–section course
these savings can be substantial. We have sections of a calculus course in this
format and another in development.

Our computer–tested course has quite a bit of on–line reference material to
support the learning–environment design of the tests, so it could be thought
of as an evolutionary step toward a computer–based course. In fact in some
sections as much as 30% of class used it as a computer–based course (skipped
the lectures and did fine).

11.1.5 Computer–Enriched

A common model we do not use is the computer–enhanced traditional classroom.
This is always over budget because it is an add–on with no compensating savings.
At one time the department had the goal of computer–enhancing every class,
and many classes were run in this mode. However we were unable to sustain
the uncompensated extra load, and this is now voluntary and rare.

11.1.6 Computer Labs

Another model we have largely abandoned is the out-of-class computer lab,
worksheet, or group project. As an add–on this is also unsustainably over
budget: support costs of the computer component may be as high as for a
completely computer–based course. I remain enthusiastic about the educational
benefits of these activities and hope eventually to incorporate some form of
them, but in the short term they are unusable for economic reasons.

11.1.7 Small Traditional Classes

The traditional ideal is a classroom with an experienced professor and 15 or
so students. This was still possible when I was a student and it remains my
personal favorite. I hope we will always be able to offer some upper–level courses
in this mode, but it has been over–budget for nearly half a century and cannot
be offered to the vast majority of our students. From this perspective the whole
computer initiative is economically motivated. The fundamental goal is to do
better than huge sections taught by adjuncts, but within the budget that forces
such measures in the first place.

11.2 Program Costs

The following table gives relative costs per student credit hour in the Mathe-
matics Department at Virginia Tech in 2003–04. These costs are the ones under
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the control of the department (mostly salary and wages). Computers, for in-
stance, come from a different budget and if we quit using computers the money
could not be transferred to salaries, so computers are not included. Costs were
computed by adding up actual salaries or wages, dividing by enrollment to get
dollars per student credit hour and then normalizing so the traditional situation
has cost 100. Traditional classes assume 40 students per section.

Traditional, tenure–track 100 (200)note1

Traditional, graduate student 60note2

Traditional, 30% prof/70% instructor 57
Traditional, all instructor 39note3

Computer-tested, 30% prof/70% instructor 32note4

Computer-based (3,500 students) 18note5

11.2.1 Notes

1. 100 corresponds to half salary, assigning the other half to research. Using
the whole salary (as Deans sometimes do) gives a normalized cost of 200.

2. Graduate student figures are higher than instructors because they have
lower loads and the cost includes tuition.

3. “Instructors” at Virginia Tech generally do not have PhDs, and have twice
the teaching load of professorial-rank faculty. They are not “adjuncts” in
the usual sense because they are full-time members of the faculty with
open-ended appointments. In 2004 approximately 1/3 of the undergradu-
ate student credit hours in our department were taught by instructors.

4. Teachers have 100 or more students per section or more sections, but no
assessment responsibilities. This is generally considered a good tradeoff.

5. All materials on computers; tutoring and at-machine personal help is avail-
able but there is no classroom teacher.

The cost shown for computer–based or computer–tested courses does not include
cost of developing materials, just as traditional course costs do not include
textbooks.

Our materials are very stable and require little maintenance after develop-
ment. I personally feel that more–frequent assessment and upgrades would be
appropriate, and that this should be included in course costs. This would lead
to modest increases in the numbers given above.

11.2.2 Scale and Efficiency

There are costs associated with the Emporium and not any particular course.
Examples are:

• server and student–computer maintenance personnel;
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• a director of operations;

• floor helpers to assist students working at the machines; and

• floor supervisors.

To explain this last, the Emporium is over an acre in size. It turns out that a
full-time supervisor is needed to organize and efficiently deploy helpers to areas
where they are needed. No doubt this would be obvious to the manager of a
department store, but it was something we had to learn.

Courseware maintenance costs are associated to particular courses. Our
costs after initial development and refinement are minimal, but whether the
materials are commercial or developed in–house, they are software and require
some maintenance.

The important point here is the way these expenses scale. Facility–related
expenses (helpers, etc.) have a significant lower bound, but increase only slowly
with the total number of students. Course–related expenses are nearly indepen-
dent of the number of students in the course. In contrast traditional costs scale
essentially linearly with the number of students. If a traditional section has 40
students then 200 students require 5 sections, 1000 students require 25 sections,
etc.

Our experience shows that at large scales great efficiencies are possible with
computer–based or tested courses. At smaller scales fixed costs will tend to
dominate. For example it may be difficult to break even with fewer than 500
students in computer–based mode. This probably means sustainable computer–
based education can only be achieved by deliberate institutional initiative: in-
dividual efforts cannot reach break–even levels.

11.3 Outcomes

Since costs of the Emporium program is substantially below those of traditional
alternatives, it is appropriate to ask about educational outcomes. Are outcomes
at least as good as with traditional alternatives, or have outcomes been sacrificed
to get lower cost? This is an unexpectedly subtle question: it turns out that
the greatest benefits have been outside the program.

11.3.1 Outcomes in the Program

It is almost impossible to make intellectually honest comparisons of courses
before and after conversion to computer formats. Grades in some early courses
did go up, but a significant amount of material had been omitted and when the
computer versions were redone with equivalent content the grades went back
down.

There is one exception: a course that was run with both traditional and
computer–tested sections for five years, with common final exams. An extensive
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comparison of performance in subsequent courses is in progress2. Preliminary
analysis suggests essentially equivalent outcomes. Detailed analysis seems more
likely to indicate useful changes (e.g. “move the test schedule up one week”)
than a significant difference.

I suspect that the “no-statistical-difference” phenomenon is a feature of stu-
dents rather than of educational approaches. Students tend to do what is neces-
sary to get their desired outcomes. More–effective approaches are likely to lead
to increased student free time (which we do not measure) rather than better
outcomes.

In any case I believe that Emporium courses would probably rate “accept-
able” if evaluated purely on educational outcomes. I also believe they could
be significantly improved. Unfortunately, upgrades are considered extra rather
than part of ongoing course costs, so are discouraged by economic considera-
tions.

11.3.2 Outcomes outside the Program

The efficiency data show that the Math Emporium has been a cash cow for the
department and the university, by handling large numbers of students signifi-
cantly below budget.

Shortly after the Emporium went into full production Virginia suffered a fi-
nancial reverse. Much of this was taken from higher education, and the Virginia
Tech math department lost 20% of its faculty positions even while enrollments
increased. Ordinarily this would have led to increases in teaching loads, larger
classes, and curtailment of upper-level and graduate offerings. However Empo-
rium efficiency enabled the department to maintain the rest of the program and
actually reduce teaching loads for research faculty!

The consequence is that the Emporium has had very positive effects on
educational outcomes in the department as a whole, but primarily through
indirect support for non–Emporium parts of the program. Ignoring economic
aspects and evaluating outcomes only in the Emporium would overlook these
very significant benefits.

11.4 More about Economics

“Economics” here is used as a shorthand for the relationship between costs and
output. “Costs” are in dollars, sometimes translated into faculty time, and
“output” is in student credit hours, with no reference to quality. It is not my
idea to use these measures: they reflect realities of funding, at least in state
universities. Both state legislatures and tuition–paying parents feel strongly
that they are already paying enough for education. Resources are much more
likely to be reduced than increased, and the job of the faculty should be to
maximize quality within this constraint.

2Downstream Evaluation of a Task–Oriented Calculus Course, see web page for current
version.
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Consequences of this picture are explored in this section.

11.4.1 Goals and Evaluations

The points at the beginning of the article can be reformulated as:

• Economic measures should appear explicitly among the evaluation criteria
for educational research and program development.

• Evaluations by other criteria should be conditioned on having appropriate
economic outcomes.

At present, for example, grant applications usually require extensive assessment
of educational outcomes and no cost accounting. Trials are usually resource–
rich (grant supported), so good outcomes demonstrate only that one can do
well with plenty of resources. This is neither surprising nor useful. In fact
the great majority of approaches explored this way depend on these additional
resources, and consequently will have no impact in the real world. They are even
counterproductive when they are taken as justifying educational goals that are
unrealistic with available resources.

At the other end of the spectrum it may turn out, particularly during startup,
that a program has economic savings but educational outcomes mixed or weaker
than richly–supported programs. Educational outcomes alone may suggest the
program is unsuccessful and should be terminated. A better conclusion is that
it has passed the hardest barrier and the next step is refinement to improve
outcomes.

11.4.2 Internal and External Resources

Budget structures frequently complicate economic planning and evaluation. For
purposes of discussion I distinguish between “internal” or flexible, and “exter-
nal” or inflexible budgets.

For example, in discussion of economics of the Math Emporium the question
frequently arises, “don’t the computers cost a lot?” I believe the program would
be economically viable even if equipment costs were counted, but in fact this is
irrelevant. The equipment budget is a separate part of the funding provided to
the University. We can use it—or not—for equipment, but it cannot be used
for salaries. This is a rigid, or external resource.

It can be dangerous to overlook this distinction. For example we use slightly
more expensive machines with a stable and maintenance–friendly (non–Windows)
operating system. Cheaper machines would have reduced external costs but in-
creased internal costs since more department–supported personnel would have
been required to maintain them. In our case the external budget is significantly
better able to handle the difference.
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11.4.3 An Example

To illustrate these points we analyze the NSF “VIGRE” program circa 2004
when the first version of this article was written. Large grants were made to
departments that enriched their educational programs. Undergraduate research
projects were the most expensive, at least an order of magnitude over budget,
but others were also expensive and the net effect was to raise the cost (in faculty
time) of “production” of student credit hours.

However the grants supported things like postdocs, not the enrichments. In
our terms the grants were inflexible or external resources provided as bribes
to encourage additional expenditure of internal resources. Internal–resource
overruns had to come out of something else. Possibilities were:

• faculty research time budgets were reduced (i.e. the research effort pays);

• time spent on un-enriched educational duties was reduced (other students
pay);

• some of the salary budget was shifted to adjuncts or other lower-cost ways
to cover the extra hours; or faculty voluntarily work overtime (faculty and
their families pay).

These programs may have been “enriched” but violating the constant–budget
constraint stressed the systems in ways that one would think would be unattrac-
tive to the NSF. Naturally, the enrichments disappeared as soon as funding ran
out, or as faculty become unwilling to continue making sacrifices. This ap-
proach to inducing long–term changes in instructional practice failed for simple
economic reasons that should have been obvious3.

Some of the worst features of the VIGRE program have been modified, but
the Education Directorate still seems to be committed to promotion of expensive
methodologies and denial of economic constraints. Consequently their programs
are unlikely to have long–term effect and their resources largely wasted.

11.5 Summary

The Math Emporium at Virginia Tech demonstrates that a computer–based
undergraduate mathematics education program can be successful both econom-
ically and—eventually—educationally. Careful analysis of this success reveals
some common causes of failure:

• Being over-budget particularly in demands on faculty time, for instance
by using expensive course designs, will lead to failure.

• Inadequate attention to economic factors in planning and evaluation can
lead to failure.

3This was obvious to some outside the Education directorate. A mathematics program
officer described the approach as “homeopathic funding”.
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• Undertaking program development without adequate support, and pro-
grams too small to take advantage of economies of scale will be problem-
atic.

More generally, undergraduate education is highly budget-constrained, and fail-
ure to recognize this is probably the main reason there have been so few really
successful innovations.
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Chapter 12

Levels in a mathematics
course

October 2008

Introduction

Our students are not well served by traditional course design. They come to us
with diverse backgrounds, interests, degrees of engagement, and ability, but
courses are one-size-fits-all: uniform assignments, tests, and—in principle—
uniform grading scales. Few students receive optimal instruction and a signifi-
cant number are seriously out of place. Student/course mismatches shortchange
students and reduce course effectiveness.

The traditional way to address this problems is to offer several courses on es-
sentially the same material but at different levels, say Standard and Advanced.
However each course still has the problems on a lesser scale, and there are mis-
placed students: the best students in Standard should be in Advanced, and
those who make F or D in Advanced should have been in Standard. We explain
in §12.2 that this is an inherent problem with multi–level courses, and in par-
ticular cannot be addressed with better placement tests. There are also D and
F students in Standard who should be in a lower level if one were available, and
the best students in Advanced should be in a higher level. Offering multiple
levels helps but doesn’t solve the problem.

Our suggestion, in a nutshell, is to offer tracks at different levels in a single
class rather than in separate classes. This would improve mobility between
levels and avoid the misplacement problem. And if it can be made to work
at all it should be possible to offer tracks at more levels than practical with
separate courses.

The essay begins with discussions of the problems to be addressed. Perfor-
mance diversity in a single class is discussed in §12.1 Outcome Diversity, and
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problems with resolving this through placement classes at different levels are
described in §12.2 Placement Tests Are Not The Answer.

The main idea is described in §12.3 Tracked Courses, using perspective from
§§ 12.1–12.2 on the problems to be avoided. As usual with a clever idea the
real question is whether or not it is practical. Some of the many difficulties are
described in §12.4 Implementation. It is doubtful that this could be implemented
in a traditional class with current student/teacher ratios. There are, however,
long–shot scenarios, and the benefits would be so great that these are worth
considering.

12.1 Performance Diversity

The bottom line in a math course is end-of-course performance. For example,
students who make grades of F or D were in some way not well matched to
the course and probably should have been in a different level. Outcomes can’t
be used to identify these students at the beginning of the course, and the ram-
ifications of this are discussed in the next section. Here we discuss problems
resulting from having students who will eventually fail whether we can identify
them ahead of time or not. We also describe problems of a very different nature
at the other end of the spectrum.

12.1.1 Under–performing students

Roughly speaking, under–performing students are those who end up with grades
of F or D in a course. Actual grades are not quite the right measure because
grades are often adjusted to avoid having a lot of Fs and Ds. A better description
is: students who would have gotten F or D in the absence of such adjustment.

The big problem associated with under–performing students is that changes
made to accommodate them undercut learning of other students. We begin with
under–performing students in Advanced courses.

Skill–oriented math classes are important because skills—the ability to work
problems—are vital for success in later coursework, and eventually for use of
mathematics in technical professions. Grades in a skills course are supposed to
reflect acquisition of skills. If there are a lot of students who do not acquire
skills then in principle there should be a lot of failing grades. Before the 1970s
(roughly) this was standard practice and these courses often did have high failure
rates.

High failure rates are now considered unacceptable. Many factors contribute
to this but one is the realization that skills courses are neither appropriate nor
necessary for many students. Under–performing students may be misplaced, for
instance to “offer them an opportunity”, not dumb. There are limits to how
much it is reasonable to punish them for simply being in the wrong place or
unable to take advantage of an opportunity. In any case a number of adjustments
have been made to lower failure rates:

• expectations have been generally lowered;
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• imprecise “understanding” may be accepted when skills are poor; and

• practices like extra credit, grade curves, dropping the lowest test, and soft
homework scores are used to disconnect performance and grades.

The result is that course goals and grades have become ambiguous. Grades no
longer indicate acquired skills, and it is unclear even to the best students that
skills should be the key objectives. In effect the course goal has been changed
to include “useful exposure”, and while this may provide general life benefits it
does not prepare students for advanced work.

Standard–level courses also have students who get F or D grades, and course
goals are distorted by adjustments made to accommodate them. These distor-
tions cause less long–term damage than in Advanced courses because skills and
preparation are not the main objectives. Further, these students are usually not
“misplaced” in the sense of being in the wrong course because there usually is
no lower–level course. We do not want to interpret “misplaced” to mean “don’t
belong in any math course”. This is a qualitatively different issue than being in
the wrong course and it is not appropriate for us to address it here.

12.1.2 Over–performing students

Over–performing students are ones who would have been successful in a higher–
level course. Since this concerns hypothetical outcomes in a course they didn’t
take, we can’t identify specific students as over–performers. In particular a top
grade in the course they did take does not reliably identify over–performers.

Problems associated with over–performing students differ depending on level,
and differ from under–performing problems in that they do not effect course
goals.

12.1.2.1 Over–performing students in Standard courses

Traditionally the main reservations about multi–level course offerings concern
insufficient upward mobility: students who at some point got put in the Stan-
dard level and can’t get out even though they would have done fine in Advanced.
These students have, in a sense, been shortchanged by being deprived of oppor-
tunities available at the higher level.

This is an individual–benefit problem for specific students and does not have
a negative impact on learning of other students.

12.1.2.2 Over–performing students in Advanced courses

These students are identified in even more hypothetical terms: success in some
sort of “Gifted” course that generally isn’t even offered.

The big problem in this area is societal. The huge role technology now
plays in our lives means we need a significant number of extremely capable
people trained to the full extent of their ability. Our educational system is
not meeting this need. The few specialized high schools that do offer “Gifted”
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courses produce far more than their share of first–class scientists and engineers,
even allowing for selective admissions. This suggests that the lack of very high–
level courses in K-12 is a major part of the problem.

These students do not have a negative impact on other students. Further
they have plenty of other opportunities so being shut out of the top echelons of
science and technology is not a serious individual–benefit problem. It is only
the societal problem that is severe.

12.1.3 Summary

Under–performing students impair the effectiveness of our educational system.
Over–performing students are being denied opportunities, and in some cases
being shut out of urgently needed technical leadership roles. Addressing these
problems would seem to require offering instruction at more levels, and enabling
easier and more appropriate mechanisms for mobility between levels.

12.2 Placement tests are not the answer

Most educators feel that if misplaced students are a problem then better place-
ment tests are the solution. A key point is that placement has to be done
at the beginning of the course, even if problems are most directly related to
end-of-course performance. Justifications are:

• Placement decisions are limited by what we can measure. We can seek
the best predictors of performance within this constraint, but there is no
point in complaining about the limits imposed by this constraint.

• Since performance predictions are necessarily imprecise we should give
students the benefit of the doubt. In other words deny admission to an
Advanced course only if we are pretty sure the student will fail, and place-
ment instruments need only be good enough for this.

• For whatever reason, educators put a lot of faith in placement tests.

All of these arguments are flawed. Placement is limited by beginning-of-course
measures only if it has to take place at the beginning of the course. Mid–
course placement is one of the advantages of tracked courses; we expand on
this in §12.3. Giving students the benefit of the doubt maximizes individual
opportunity but also leads to distortion of course goals and reduction in overall
learning, as explained in the previous section. The last point concerns belief
rather than an argument, and the objective in this section is to show this belief
is unfounded.

12.2.1 False positives and negatives

Placement decisions can fail in two ways: false positives are students who get
Advanced placement but turn out to be under–performers; false negatives are
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students denied Advanced placement but who would have been successful at
that level.

If the placement system has more than 10% false positives then, as explained
in §12.1.1, Advanced teachers have little choice but to weaken the link between
credit and performance. Therefore a high false positive rate undercuts the skills
orientation of the course. Since the course then no longer meets stated goals,
credit for it gives misleading input for later placement decisions and raises false
positive rates in later courses.

The usual way to keep the false positive rate low is to have higher require-
ments. But this inflates the false negatives and in practice makes skills courses
unduly inaccessible. The extreme is a placement test that can only be passed
by those who already know the material. The false positive rate is near zero
and the course would go very well, but the false negative rate is near 100% and
the course serves no educational function.

Real–life placement methods are too imprecise for there to be any satisfac-
tory balance between false positives and negatives.

12.2.2 Tests are Untested

There is little solid data on effectiveness of placement tests because the self–
fulfilling way they are used makes them almost impossible to evaluate. False
positive rates tend to be masked by instructors’ changing grading criteria to
keep failure rates acceptably low. False negatives are practically impossible to
assess and usually ignored.

There are a great many factors that effect performance but are not measured
by tests: procrastination, short attention span, poor work habits, not to mention
alcohol, drugs, and the emotional turmoil of youth. It should seem silly to even
hope for a test with false positives under 10% and an acceptable false negative
rate. Nonetheless many educators seem to take it as an unexamined article of
faith.

12.2.3 An Example, and Gateway tests

We describe a real–life example. Our second-semester engineering calculus
course has 25–30 sections each semester. Some years ago a series of brief
computer–based “skills” tests were introduced to assess learning consistency
across sections. The first of these measured entry skills and was essentially a
placement test, though it was not used that way. Data from several thousand
students showed an impressive correlation between scores and course outcomes.
This probably could have been used to justify using the test for placement, but
the statistics hid an asymmetry. Essentially all students who failed the course
had failed the skills test but the converse did not hold; most who failed the skills
test did fine in the course. The test had a low false positive rate but a very high
false negative rate.

The story takes an interesting twist. These tests are multiple–try. Each
individual test is different, students can get unlimited practice copies, and the
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proctored version can be taken multiple times with the best score counting. The
data showed that students who initially failed but kept trying until they passed
did almost as well in the course as those who got a perfect score the first try.
This was taken to mean that entry skills are not immutable things that can only
be measured and sorted, but somewhat malleable.

The test is now used as a skill–boosting “gateway”. Students who sign up
for the course must pass the skills test in the first week to stay in the course.
Most pass on the first try, but:

• A few percent of enrollees drop out without attempting the test for credit.
Presumably they have decided—after looking at practice tests—that they
will not be successful, so the test is helping with self –placement!

• A tiny number, less than 1%, attempt the test but are unable to eventually
pass.

• The remainder—the false negatives of the originial test—have to work to
get their skills up to speed but do manage it.

Instead of a filter the test has become an instructional tool.
The tidy outcome in this example may depend on pre–filtering by the univer-

sity admission process. Even so it does not reduce false negatives and positives
enough to solve the basic problems of placement.

12.3 Tracked Courses

In a multi–level course students are sorted and placed in different classes for
which they receive different credits. Tracked courses reverse this: students enter
a single class, sort themselves into tracks as the course progresses, and only at
the end of the course is a decision made about the credit received.

12.3.1 Basic Plan

For simplicity we describe a course with two tracks: Upper and Lower.

• Students entering the course are not assigned to a track, and beginning
classes are not specialized to either track.

• Tentative track assignments are based on performance on the first major
test. Lower–track students who want to be in the Upper track can retake
an equivalent test to try to get the necessary score. Students who qualify
for the Upper track can, if they insist, be reclassified as Lower–track.

• Subsequent tests are track–specific. Upper–track students with unsatis-
factory scores are reassigned to the Lower track, but again with an oppor-
tunity to improve the score.
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• If there are several sections of the course then sections can specialize after
the first test. Students might have to change sections to be in a class
appropriate for their current track.

At the end of the course each student will be in one of the levels, and will have
test and other course scores. Grading and credit is handled as follows:

• Upper–track students receive Upper–track credit that qualifies them for
more–advanced later courses, and grades A, B, or C depending on scores.
Students who would have gotten grades indicating unsatisfactory Upper–
track performance have dropped to the Lower track where more appropri-
ate standards can justify better grades.

• Lower–track students receive lower–track credit and the usual A–F grades,
unless there is a yet lower level or track for the under–performers.

• There is an element of choice for Upper–track students: any Upper track
grade can be converted to an A in the Lower track.

The choice offered in the last point provides a safety net. Students interested in
law or medicine or seeking admission to elite college or graduate programs often
avoid serious math courses to avoid damage to their grade point average. This
is unfortunate because these students are often quite capable of Upper–track
work. They might even be lured into a technical profession: many people in
mathematics and science ended up there because they took a tough course and
liked it.

An important feature of this design is that marginal students make their own
decisions. Students struggling to stay in the Upper track may decide they aren’t
that interested in technical careers anyway, and change their goal to getting an
A in the Lower track. This is certainly better than going limp and dragging
down the whole class. If they are determined to stay in the Upper track they are
motivated to work harder and rise to the right challenge. Finally this decision
is made in small steps—one test at a time—so they can see exactly what is
required and make an informed decision.

12.3.2 Introduction to Proofs course

The previous section is implicitly aimed at K–12 and the first few years of
college. This section suggests that the approach could also be useful at higher
levels.

In traditional college math sequences there is a shift of emphasis after calcu-
lus from problem–solving to more abstract and conceptual reasoning, “proofs”
for short. Most students find the transition to proofs uncomfortable and by and
large only math majors attempt it. This is unfortunate since the generalized
reasoning skills acquired this way are germane to cutting–edge work in any sci-
ence or engineering field. Some top software companies, for instance, recruit
PhD mathematicians on the principle that it is easier to teach someone with
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high–level logical skills to use computers than it is to teach a computer expert
to think on a higher level.

Until relatively recently the custom was to introduce students to proofs in a
sink-or-swim way in courses on real or complex analysis or modern algebra. This
was tough on students but satisfactory numbers made it through. Expansion
of graduate programs in the 1970s and later weakening of lower–level education
made this approach unworkable and many programs introduced “Introduction
to Proofs” courses to help with the transition.

There is a new difficulty with the problem–proof transition. Further soft-
ening in lower–level courses has meant that there are fewer students with the
preparation and discipline to make the transition, even among math majors,
and even with help from a Proofs course. Faced with the need to keep numbers
up and programs viable, some departments have softened their proofs courses.
In effect they offer exposure credit to boost low skills scores. Naturally this
degrades the end product.

Some university undergraduate math programs are now almost incapable of
producing students that would qualify for their own graduate programs. Elite
graduate programs sustain quality by recruiting foreign students. Many less–
elite graduate programs are being softened to be accessible to Americans be-
cause the alternative is to close down. In other words the upper end of our
mathematics educational system is starting to erode.

Using tracks, for instance Professional and General, in a proof course would
help with this. The General track would be quite satisfactory for prospective K-
12 teachers and the less math–intensive sciences. The Professional track would
require the discipline needed for further math and math–intensive science and
engineering, without harming the General–track students.

12.3.3 Both Tracks and Levels

We have used “multi–level” for separate courses with placement at the beginning
of the term, and “tracked” for a combined course with placement at the end
of the term. Up to this point the two have been compared directly in order
to make the differences clear. In practice, however, the two approaches are
complementary and often would be used together.

• A class with a serious skill component will spend a lot of time doing
things non–skills students generally dislike. A lower track would reduce
the impact of skills materials but would not make it more relevant. A
non–skills course can focus more on interest and enrichment. Separate
courses for the two levels are appropriate.

• There could be tracks in each level, with significance partly defined in
terms of subsequent level placement. Upper–track credit in the upper
level would be required to qualify for the upper level in the next course;
lower–track students would move to the lower level.
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• This does re–introduce the mobility problem that is one of the virtues of
tracks. It should be less problematic because students have had a lot of
input into their placement, but some sort of upgrade process should be
provided.

12.4 Implementation Problems

We list a few obstacles to implementation of tracked courses. Familiar problems
such as developing texts and syllabi are not discussed.

12.4.1 Resource Constraints

Informal use of tracks was common in the one-room-schoolhouse days because
there were too few students to justify separate classes. This is rarely possible
now because it requires unrealistically low student/teacher ratios, willing and
well–behaved students in K-12, and may require lower content density in college
courses.

Formal introduction of tracks will not solve the student/teacher ratio prob-
lem. Teachers with typical–size classes are rarely able to focus on a subgroup for
an extended time. Further, if test preparation, grading, etc. are done by hand
then tracks could double the time required for this. Trying to introduce tracks
in such cases will predictably lead to failure and should not be attempted.

Possible exceptions are:

• “Gifted” tracks in upper–level courses. The student/teacher ratios are
generally low, students are cooperative, and very few students would be
involved in the upper track.

• Lower tracks in low–level courses. These could be accomplished simply by
changing the grading scale at the lower end, without changing materials
or presentations.

• Computer–tested courses.

12.4.2 Institutional Barriers

Most institutions will be uncomfortable with the idea of students signing up for
a course without knowing which course it is. They may also be uncomfortable
with leaving course–credit decisions (i.e. end-of-course placement) in the hands
of the faculty. Resistance by credit score–keepers (Registrars et al.) will make
trials of the approach difficult.

12.5 Conclusion

Traditional course structure evolved to support a single goal, and the tradi-
tional single goal was good outcomes for a relatively small number of students.
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Education now has another, conflicting goal: modest outcomes for essentially
everyone. The traditional structure has been unable to do justice to both goals
at once. Tracks may provide a way to resolve this by offering several grading
criteria and letting students play a significant role in deciding which goal and
associated grading criterion is best for them.

Tracks should be relatively easy to implement in computer–tested courses.
The extra burdens of course administration and multiple assessments make the
approach infeasible in most traditionally–tested courses.



Chapter 13

Teaching vs Learning in
Mathematics Education

Feb. 2009

Introduction

Most educators see teaching and learning as two sides of the same coin: we teach
so they will learn, end of story. It was hard to compare while everyone was doing
more-or-less the same thing. Technology has changed this however, and I’ll give
examples that suggest we are far too focused on what happens on our side of the
desk. It looks as though teaching and learning were never as closely linked as we
wanted to think, and the gap will widen unless we really focus on students and
learning, particularly long–term learning, and not through the lens of teaching1.

13.1 Goals vs. Responsibilities

The way we organize it, math begins with arithmetic and the rest of the subject
is built on this. Arithmetic instruction should, therefore, provide a foundation
for learning in the rest of mathematics. We need some careful terminology to
describe how this should work.

13.1.1 Generalities

Teaching or learning goals are usually understood as short–term, specifying
deliverables, and determined by the teacher or course designer. Teaching goals
specify that a teacher should do certain things, while learning goals specify that

1This is not a new point, see Association for Educational Communications and Technology.
We, as a community, might have avoided a lot of grief if we had paid more attention to it.
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students should end up with certain things. Traditional goals in arithmetic
mostly concern working problems.

The objective “provide a foundation for further learning” does not qualify
as a goal in this sense so we refer to it as a responsibility. More explicitly,
responsibilities are long–term or downstream, defined operationally rather than
explicitly, and not a matter of choice. In principle, goals should be chosen so
that responsibilities are fulfilled. It is certainly not clear how “work problem”
goals end up meeting “provide foundation” responsibilities, but in traditional
courses it seems to work.

A final, and absolutely vital, general point is that “students” are individuals.
We have goals for and responsibilities to individual students, and different indi-
viduals might need substantially different goals and responsibilities. Discussions
that don’t stay grounded in this reality encourage one-size-fits-all thinking that
is a real disservice to students.

13.1.2 Calculator arithmetic

Returning to arithmetic, there have been two recent developments. First, cal-
culators enable more students to achieve “work problems” goals more easily
and with greater accuracy; and second, “understand what they are doing” has
replaced rote computation as a goal2. The good news is that in these programs
goals are being met better than ever. The bad news is that long–term responsi-
bilities are not being met. Number-sense and symbolic-skills deficits in students
from these programs were a major issue in the K–12 “math wars” and are a
serious concern at the college level.

Apparently a disconnect developed between goals and responsibilities. What
happened and what can we learn from it?

The first lesson from the disconnect is that “work problems” by itself is evi-
dently not enough to “provide a foundation”. Apparently there was something
about the way traditional students work problems that was important3. But
rejecting calculators is not a satisfactory response. We urgently need to under-
stand how by–hand arithmetic supports later learning. Perhaps we can fix the
calculator approach by adding the missing factor to teaching goals. This might
improve the traditional approach as well4.

The second lesson from the disconnect is that there are several ways to
address responsibility problems. Responsibilities of one level can be thought of
as preparing students to accomplish goals at the next level. If goal changes at
the lower level no longer meet this responsibility then one response is to adjust
the lower–level goals. However it is also possible to change the definition of
“responsibility” by changing the goals of the higher level. This was the strategy
in K–12 calculator-oriented curricula. They adjusted goals at all levels to “take
advantage of calculator skills” and de–emphasize traditional goals not supported

2Reference to NCTM standards?
3For a guess see “K–12 calculator woes”.
4If the guess in the previous footnote is right then traditional approaches are indeed far

from optimal.
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by calculators. The result was a system with internally consistent goals and
responsibilities.

The goal–changing approach to responsibility eventually fails. College courses
have responsibility for preparation for study in science, engineering and ad-
vanced mathematics. These responsibilities are determined by the demands of
the subjects and can’t be negotiated. Meeting these responsibilities strongly
constrains choices of short-term goals in college courses. Working down the
chain, college course goals should establish end-of-curriculum responsibilities
for K–12. There we have a train wreck: the calculator–oriented K–12 commu-
nity (at least) seems to have no understanding of, nor interest in, these external
responsibilities.

So far this lesson seems to concern responsibility, but there is a teach-
ing/learning core. Responsibilities concern learning because the teacher is not
in the picture when responsibilities fall due. However the K–12 education com-
munity is intensely teacher–oriented. The “responsibility” idea is not part of
the world view and even hard to formulate sensibly.

A comforting corollary of this last point is that the school/college mismatch
comes from a lack of understanding rather than conscious irresponsibility. This
is further illustrated by a common K-12 response to college–level complaints:
we should follow their lead and adjust our teaching goals to “take advantage of
new skills” rather than bemoan the decline of old ones. Our unwillingness to
do so looks like a reactionary attachment to the past; it doesn’t occur to them
that it might result from constraints of downstream responsibilities.

The third lesson from arithmetic concerns why taking understanding as a
teaching goal did not improve outcomes, and in particular why it did not replace
the mysterious benefit of hand arithmetic. The reason is not deep. Over the
millennia mathematicians have found that in order to support learning “under-
stand” must be given a rather strong meaning, including “make the solving of
problems straightforward”. K–12 educators use the word in a much weak sense
that does not imply skills. They use a meaning already known (by mathemati-
cians) to be dysfunctional for mathematical learning!

To connect this to the teaching/learning theme note that the teaching point
of view suggests a lot of flexibility in choosing goals. One can choose the meaning
for “understand” and there is no obvious reason why one should not take a weak
one that is easy to achieve. Furthermore one can formulate teaching goals to
address any definition.

The learning point of view is much more constrained. First, the meaning
used for a word must accomplish longer–term responsibilities. Second, in order
to incorporate something into learning goals it must be visible in outcomes,
i.e. be testable in some way. Even trying to use the math-ed definition for “un-
derstand” would have revealed it’s inadequacy. This doesn’t solve the problem
though. The mathematical meaning satisfies responsibilities and is testable but
is far too demanding to be useful at this level. We are taken back to the point
in the first lesson: we need a functional explanation of how by–hand arithmetic
supports later learning before we can identify good learning goals.
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13.1.3 Computer calculus?

I used calculator arithmetic in the example above because the response of the
K–12 community amplified rather than fixed the problem, and consequently it
gives a relatively clear signal at the college level. Similar things can happen at
any level. For instance, do calculus students learn more from by-hand techniques
of integration than just how to evaluate integrals? Use of computer integration
packages will let us meet teaching goals more easily and more often, but will
they undermine long–term learning?

I have learned that I am not smart enough to anticipate something like
the calculator–arithmetic problem. Without this example I might have used
computers to screw up my integral calculus course and not known there was a
responsibility failure unless someone at the graduate level or in a client discipline
pointed it out. But I should be smart enough to learn from the example. If I
screw up integral calculus now it will be my fault.

13.2 Improved teaching vs. Improved learning

College classes over 100 are now common. Traditional teacher–student inter-
actions are impossible, but a number of technologies have been developed to
provide substitutes. One is classroom polling (clickers). A recent article in the
journal Science5 describes how a biology professor used clickers to show that stu-
dents can learn by talking to each other. Another approach assumes students
have laptop computers, as is now common in our engineering courses. Software
enables the professor to send material to all students or specific students; receive
questions or comments from students; import material from student comput-
ers to assess later or to display and discuss, etc. Some professors are quite
enthusiastic about this.

These technologies improve the teaching experience. Do they improve learn-
ing? Is having active discussions or getting students to talk to each other really
an effective use of class time6?

The answer depends on why 100 students were crammed in the room in
the first place. We know that students learn less in big classes so this practice
is either restricted to courses with modest goals or is forced by economics:
resources are so scarce that we cannot afford to split the class into two sections
of 50, or three sections of 34. In classes with modest learning goals student
engagement may be as important as actual learning and these practices may
be appropriate. In classes with more ambitious goals (often the case in math)
these practices may be too inefficient to be appropriate.

We expand on the efficiency concern. When a teacher interacts with one
student he is to some degree neglecting the others. Interacting with one in a
class of 100 is to neglect 99. Further, interactions with any one student will be

5“Why peer discussion improves student performance on in-class concept questions”, Sci-
ence, vol. 323 pp. 122–124.

6The benefits of student interactions are not in question and did not need rediscovery. But
would it be better to promote this outside the classroom?
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very rare so this does not address individual needs for help. It may not be quite
this bad: if ten students benefit from the interaction, and only 50 were really
following the lecture anyway, then student benefit decreases only by a factor
of 5. And note that “benefit” is not the same as “engage”. Students can be
engaged (or entertained) without getting any particular benefit, and again this
can be positive if it works7 and there are no efficiency concerns. However for
learning purposes, teacher–student interactions in large classes are inefficient at
best, do not effectively address student needs, and are usually a massive waste
of student time.

The extreme learning–oriented view is this: think of the teacher’s time, or
maybe the teacher’s salary, as a resource. Is a traditional class the best way
to use this resource to get learning? In some cases there are already computer-
based systems that would do better. The message I think we should be getting,
in math anyway, is that there is a point beyond which teaching in the tradi-
tional sense is no longer a satisfactory path to learning, even if it can be made
“engaging”.

13.3 Computer teaching vs. Computer–based
learning

Most courseware is developed by experienced educators, which is to say people
with a lot of classroom expertise. It shows: most computer courses are modeled
on traditional courses and the computer is seen as an “electronic teacher”.

Ten years spent watching students trying to deal with courseware has con-
vinced me that this point of view is wrong. Students have to take an active
role in computer-based learning. They seem to have “learning instincts” in the
sense that there are consistent behaviors when they are ready to go to the next
stage, get stuck, etc. Sometimes there are several different patterns. The point
is that none of these patterns match classroom practice.

We have to think of the learner as the center of the process. Not think “what
should we have her do next” but “how might she want to approach the next
task?” Watch and find out rather than extrapolate from classroom experience.
And then make sure the way is clear and tools designed to work the way she
wants to use them are at hand.

13.4 Information delivery vs. Diagnosis

What is a teacher’s core mission? Most would give some version of “information
delivery” and most classroom practices fit this description.

Students now have many sources of information. I have seen students look
something up on Wikipedia rather than try to find it in the course text. Web
materials and computer courseware can do a good job of providing information

7I’m not sure my students were particularly entertained.
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in a variety of media and at convenient times. Are teachers irrelevant, or is
there a better description of the mission?

I believe our principal mission should be “help with problems of information
delivery”. Students learn relatively easily but the learning is usually flawed.
What we can do that machines cannot is diagnose and fix learning errors. The
key, again, is a shift of emphasis from teacher to learner.

The computer–side help system in the Math Emporium8 illustrates this
point. In a nutshell the help goal is “fix and run”. The helper listens care-
fully to diagnose the student’s specific problem, says the minimum needed to
get them past it, and leaves.

Experienced teachers have a hard time doing fix-and-run. They want to
say “let me explain this to you” and give a mini-lecture. The answer to the
student’s problem is in there somewhere but neither the teacher nor the student
know where. The teacher didn’t diagnose the specific problem, and the student
has probably already heard a lecture that didn’t work. Or the teacher will say
“I’ll show you how to work this problem”. The student’s work, good as well as
bad, is discarded. The new solution may help but the student is often left with
a flaw that will surface again later. It is very hard for experienced teachers to
listen instead of talk, but this is the key to learner–oriented education.

I myself have thirty years of classroom teaching whispering in my ear “give
your insightful lecture”. As with advice to my children about their boyfriends
and girlfriends, I’ve had to learn that an insightful lecture is often not the best
path to learning.

13.5 Summary

Technology has enabled us to make some pretty bad mistakes. In the long run
this is all right if we recognize and correct these mistakes. But one of the lessons
seems to go to the very core of the way we see ourselves: teaching is not the
same as learning, and changes that we think improve teaching may actually
degrade learning. Can we make the transition from “teachers” to “learning
facilitators”?

8Virginia Tech Math Emporium, http://www.emporium.vt.edu

http://www.emporium.vt.edu
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Chapter 15

Updating Klein’s
‘Elementary Mathematics
from an Advanced
Viewpoint’: content only, or
the viewpoint as well?

April 2010

15.1 The Question

The basic point of Felix Klein’s famous 1908 book was that the rigors of profes-
sional practice had required mathematicians to develop much clearer and deeper
views of mathematics than those of the ancients, and these clearer views could
be a powerful resource for elementary education. He gave rich and convincing
demonstrations of this idea in his book and other work, and this has been one
of the main influences in the area.

Mathematics has moved on since 1908, and the ICMI Klein Project1 was
formed to develop a modern version of Klein’s book. The question here is:
should the objective be more mathematics from Klein’s “advanced viewpoint”,
or should the viewpoint be updated as well? The point is that the rigors of pro-
fessional practice in the intervening century have pushed contemporary math-
ematics as far beyond Klein’s viewpoint as his was beyond that of, say, the
sixteenth or seventeenth century2. Could contemporary viewpoints be a corre-

1See http://www.kleinproject.org/.
2In fact much of twentieth century mathematics would have been literally incomprehensible

to Klein because he was committed to an ineffective approach to concept formation, see §15.3.
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spondingly better resource for elementary education?
At present we do not know how to formulate such a viewpoint, and there are

substantial barriers to even exploring the idea. The real question for the Klein
Project seems more modest but would still be a challenge: should the viewpoint
be made upward-compatible, to reduce barriers to eventual modernization?

General perspective on the issue is given in the next section. Section §15.3
illustrates, in the context of concept formation, what might be involved in a
contemporary approach to elementary education3.

15.2 Perspective

This section concerns generalities. The following sections, on concept formation
and methods of working, clarify what might be involved in a contemporary view-
point on elementary mathematics, and the final section discusses what upward
compatibility would involve.

15.2.1 Historical Baggage

Modernizing the “advanced viewpoint” on elementary mathematics is an emo-
tionally charged topic, and this is partly due to Klein.

Much of the changeover to contemporary methodology took place early in
the twentieth century. The transition was traumatic for the community and
Klein was one of many vocal and determined opponents of these changes4. At
the time it seemed to be a matter of philosophy and taste, but in hindsight
we see that the changes were forced by increasing difficulty of the mathematics
and ambition of the profession. Klein lost the struggle because his viewpoint
was inadequate for twentieth century mathematics. In any case his viewpoint
is that of the late nineteenth century; much of it was professionally obsolete by
the time he wrote his book on education; and Klein was well aware of this and
not happy about it.

It seems that Klein was determined not to lose the same struggle at the ele-
mentary level. He built his well–honed arguments against the new methodology
into the philosophical foundations of his viewpoint, and in effect demonized the
new methods. He was so successful that most educators still view them with
fear and loathing. Moreover his viewpoint—by design—cannot be modernized
without actually reputiating a good deal of it, and the very idea is met with
hostility.

One result of this hostility is that it is virtually impossible for educators to
get funding for, or publish, research on the use of contemporary mathematical
methods. This is a barrier that needs to be lowered.

3A great deal more detail, explanation, justification, and suggestions are given
other essays, see the Education, and History and Nature of Mathematics pages at
http://www.math.vt.edu/people/quinn/.

4See for example §4.2.1.1 (pp. 197199) and §4.8.3 (p. 277) in Jeremy Gray’s Plato’s Ghost,
Princeton U. Press 2008.

http://www.math.vt.edu/people/quinn/
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15.2.2 Ineffective Response

Articulate arguments against the new methodology were developed early in the
twentieth century and have been refined since. In contrast there are almost no
coherent arguments for, or even accounts of, this methodology. The ones I have
seen are not even convincing to me.

There are reasons for this incoherence:

• If they think about it at all, mathematicians feel that the obvious power
and success of contemporary mathematics makes external justification or
defense unnecessary.

• Explicit internal justification or defense is also unnecessary. These prac-
tices became standard because they are much more effective, and natural
selection defends them in the sense that people who try to do advanced
mathematics using the old methods usually fail quickly.

• Previous methodology was usually the result of conscious philosophical
investigation so was well–articulated at an early stage. Contemporary
practices are the end result of a natural selection process that not only
was not consciously driven but was opposed by philosophers.

• Finally, the methodology is most effective when it is internalized and in-
visible to the user. Invisibility makes effective explicit description difficult,
and attempts so far have been incoherent, off–base, or both.

In any case the articulate arguments are still the ones against contemporary
methodology. The people making these arguments—philosophers, educators,
hold-overs from the nineteenth century, cognitive psychologists, some physicists
and applied mathematicians, etc.—are ridiculed and dismissed as irrelevant by
the professional community. But they have not been effectively answered, and
their views are still accepted outside the mathematical community.

15.2.3 Is Change Needed?

Attempts to use modern methodology in education have been unsuccessful and
this is generally interpreted as showing that Klein was right to oppose it. How-
ever there are reasons to be cautious about this conclusion.

The first point is that traditional mathematics education has not been sat-
isfactory either. There are bright spots but overall results fall far short of
needs. Twenty years ago in the US the NCTM developed “Standards” that
strongly emphasized Kleinian ideals such as building on intuition, preferring
understanding to rote work, and connecting to applications and the physical
world. This has been enormously influential, but outcomes have declined. Ex-
cuses for the decline include poorly prepared or indifferent teachers, disengaged
parents, lazy and distracted students, bad materials, in fact everything except
the basic methodology.
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Mathematics itself has been incredibly successful in the last century, but
had to abandon this methodology to achieve success. Perhaps the continued
use of nineteenth-century methodology is one reason education has been unable
to improve much on nineteenth-century outcomes.

Another concern is the “pipeline” problem5. All school children study math-
ematics but very few go far enough to meet needs in subjects that depend on seri-
ous use of mathematics. The US has depended on mathematical high–achievers
from other countries to make up its own deficit for almost half a century, and
this dependence is growing because the pipeline losses are growing.

My concern is that the current pipeline by design has a nearly complete
blockage at the transition from elementary to advanced mathematics. Basing
elementary education on nineteenth–century principles means that every stu-
dent who wants to go much beyond calculus must go through the wrenching
methodological change that Klein himself could not manage. If we want bet-
ter throughput then we need a more modern pipe, or at least one designed to
connect better with the modern pipe later in the system. In other words, el-
ementary education with a viewpoint either based on, or upward compatible
with, contemporary methods.

The pipeline problem may be connected to another issue. It is often lamented
that teachers of school mathematics rarely have any exposure to advanced top-
ics. But their education courses teach them that the methods needed for success
in such courses are “wrong”. What they learn in education may make them fail
in mathematics!

The final point concerns failures of “new math” attempts to use modern
methodology in education. These were designed by mathematicians, and we
have also seen poor results—most recently in California—when mathematicians
try to design traditional programs. It seems to me that educational incompe-
tence and underestimation of the difficulty of innovation by mathematicians are
more than enough to explain these failures. The methodology should not be
blamed. This is not to say it is the answer, just that it has not had a good test
and should not be ruled out.

15.2.4 Conclusions

The first conclusion is that it is not yet possible to develop a contemporary
viewpoint on elementary mathematics.

• Lack of success to date means there are currently no good models, and
suggests that any such development will be long and difficult.

• Traditional hostility to the idea means that the methods themselves are
foreign to nearly all educators.

The second conclusion is that there may be some urgency to development
of a viewpoint that is upward–compatible, at least in the sense that it is not

5See the Pipeline Project of ICMI at http://www.mathunion.org/icmi/other-
activities/pipeline-project/.

http://www.mathunion.org/icmi/other-activities/pipeline-project/
http://www.mathunion.org/icmi/other-activities/pipeline-project/
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hostile to contemporary methodology.

• The current entrenched hostility makes it impossible for educators to even
try contemporary ideas. Actual innovation from within the community is
unlikely for at least a generation after hostility has abated.

• This hostility also means innovation cannot come from outside the com-
munity, even if by some miracle a mathematician were to get it right.

15.3 Example: Concept Formation

The old and contemporary methodologies differ substantially in their approach
to development of mathematical concepts. The approaches, and arguments for
and against them, are sketched in this section.

15.3.1 Definitions

19th century : Intuitive ideas, either innate or abstracted from experience with
the physical world, can be refined to give concepts on which elementary math-
ematics can be based. Experience with elementary mathematics develops new
intuitions that can be refined to give a basis for more advanced work.

Contemporary : Concise formal definitions are like seeds that contain the DNA
of a concept. Working with the definition is like planting the seed and tending
the sprout. Physical or intuitive context may clarify the purpose of the mature
plant and guide development, but if there is a conflict between preconceptions
and DNA, DNA wins.

15.3.2 Arguments for the old approach

The old approaches have been obsolete in professional practice for a century. As
a result arguments for educational use of old approaches tend to be just as much
arguments against the new. Further there are two versions: the strong form
asserts (following Klein) that the change in professional practice was a mistake.
The weak form is that regardless of the benefits to professional practice, the
nineteenth century remains a better model for elementary education.

The main arguments are:

1. Connections to intuition and the physical world makes concepts easily
accessible, particularly to young children.

2. Axiomatic definitions, in contrast, are artificial and not easily accessible
because they are unnatural in a cognitive sense.

3. Connections to the ‘real world’ makes the importance and meaning of
a concept clear, and this should be reenforced with word problems and
applications.
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4. Axioms are matters of convention and more likely to stifle intuition and
understanding than support them. Their significance is unclear and indeed
to the extent that they are abstract and disconnected from reality they
may not have any real meaning.

5. Many mathematicians, including some of the most powerful, depend on
intuition and understanding rather than axioms. The best educational
goals should be this sort of intuition and understanding, not axioms.

15.3.3 Arguments for the contemporary approach

These arguments are my own because, as mentioned above, I find most of what
was previously available incoherent and unconvincing. I would appreciate feed-
back if they still seem incoherent. They are organized roughly as responses to
the arguments above.

1. Formal definitions will not always be appropriate, but when they are they
give more precise and more usable concepts, much faster. The reasons
have to do with primitive features of human learning6:

• It is easier and faster to learn something new than to find and repair
errors in pre–existing ideas. Beginning anew with a definition, and
taking care that the concept develops accurately, takes advantage of
this. Beginning with a vague intuition commits one to a lengthy and
difficult repair process.

• Repeated finding and repair of conceptual errors often leaves concep-
tual scars (associations with or confusions about the process) that
inhibit full internalization and fluent use.

2. Mathematical concepts based on definitions often have powerful features
that were not part of anyone’s intuition7. As a result the mathematics
often illuminates naive intuitions far more than naive intuition illuminates
mathematics.

3. Axioms certainly can be arbitrary, but the standard ones appropriate to
elementary mathematics are not. They have been carefully crafted over
long periods to optimize speed and precision of the concept–development
process. They are also designed to maximize the effectiveness of the con-
cept, sometimes in ways that are not evident for a long time.

4. Mathematical concepts should be thought of more as tools to use to
achieve understanding, than as things to be understood. In other words
the appropriate goal is to learn to use them rather than “understand”
them.

6See Cognitive Neuroscience and Mathematics Education for discussion and a plan for
further exploration.

7For an example see the discussion of fractions in Proof Projects for Teachers.
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• When concepts are well–internalized people do feel that they “under-
stand” them and they have “meaning”. But these are psychological
expressions of mastery. They may indicate that a goal has been
reached but are not themselves goals.

• Abstraction or elaboration may make a concept a more effective tool,
and thereby enable more understanding. It may also make the con-
cept harder to internalize. In practice this leads to tradeoffs between
power and accessibility. The common view that abstraction makes
a concept “harder to understand” obscures the utility aspect and
prevents finding a good balance.

5. Finally it is true that many powerful mathematicians work intuitively.
It is false that these intuitions are the ones they started with. These
intuitions are the result of extensive and intense work with axiomatic def-
initions that are so completely internalized that they have become invisi-
ble. Vast experience results in complicated manipulations being handled
by the subconscious, and this appears to the conscious mind almost as
direct perception or magically effective “understanding”. Unfortunately
there are no shortcuts to this blessed state. I have seen many attempts to
get “high–level understanding” without extensive low–level work, at levels
from elementary algebra to graduate study to professional mathematics,
and they have all lead to dysfunctional concepts and dead ends.
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Chapter 16

Dysfunctional Standards
Documents in Mathematics
Education

December 2004, revised November 2008

Introduction

This essay grew out of a meeting held in Park City in July 2004 to review K–12
Mathematics Standards Documents from the 50 US states. The objective was
to look for commonalities and in particular determine the extent to which the
1989 NCTM publication Curriculum and Evaluation Standards for School Math-
ematics had acted as a template for the development of such commonalities. In
fact this publication has been very influential, but it has been interpreted in so
many ways—particularly in the upper grades—that the commonality seems to
be more of language than content. Further there seemed to be little reason to
think this influence has made these documents more effective.

Here we back up a bit and ask: what is the point of a standards document?
Who is supposed to read it, and what do they need from it? In §16.1 we list
some jobs to be done. These jobs fall to the standards document by default—
nothing else can do them—so standards writers cannot decide whether or not
to take on these jobs, they can only decide how well to do them.
§16.2 concerns standard high–stakes tests. These seem to be necessary as

the “enforcement arm” of the standards process1, but current tests are often
counterproductive and linkage to standards is poor.

Even this brief discussion makes clear that genuinely effective documents
will be very difficult to develop and are beyond the scope of current procedures.
We may have to seek other ways to improve our educational system.

1See The K–12 Math Test Conundrum for a brief discussion.
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16.1 Roles for Standards Documents

Standards documents provide organizational frameworks and common reference
points for teachers, administrators, curriculum developers, textbook writers,
test developers, and indeed anyone interested in the system. To be effective
they must be interpreted unambiguously and consistently by all parties.

16.1.1 Tests

The most problematic relationship is between standards and tests. In principle
the high-stakes system-wide tests coming into wide use should reflect standards.
In practice standards are vague and often unrealistic statements of goals that
give little hint how they should translate to a test.

For example some state standards include enough probability and statistics
to justify the use of a college final exam as the state test. This is clearly unre-
alistic, and in fact very little of the material appears on actual tests. Teachers
obviously find old tests much better guides to the outcomes expected. Subse-
quent tests are expected to be consistent with the old ones, and to accomplish
this the test designers refer not to the standards, but to the old tests. As a
result old tests become de facto standards. To the extent the official standard
differs from tests it becomes irrelevant.

There are many well-known disadvantages to teaching to a test, and some
are discussed in §16.2. But with high-stakes testing this will happen unless a
teacher can use the official standard to anticipate tests in detail: what will not
be covered as well as what might. At the very least this would require a large
number of sample problems and careful attention to what can be realistically
accomplished in a typical classroom.

16.1.2 Textbooks

One of the main influences of standards documents is guiding the selection of
textbooks. But conformity to standards is difficult to determine in the best
of circumstances and nearly impossible when standards are unclear. To deal
with this some publishers and state departments of education have developed
a bizarre convention: the publisher prints at the top of each page the standard
ostensibly addressed by the material on the page. The department of education
then checks to be sure each standard appears at the top of at least one page.
This can hardly be thought of as quality control.

Linking texts and standards can also enforce a disconnect between texts and
teaching: teachers take old tests as de facto standards, tests differ from official
standards, and texts conform to official standards. In any case the standard
does not serve as a useful common reference point.

Matching texts to standards would be possible if standards are detailed and
stable, and worthwhile if they also correspond to classroom practice.
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16.1.3 Coordination

A common observation in comparisons of educational systems is that US pro-
grams have far more repetition. Some of this is by design but some may be a
consequence of the standards system.

Frequently material is described in multi-year “bands” or “threads” rather
than for years or smaller increments. This means teachers cannot count on
material having been mastered until the end of the band. Or put another way,
it is consistent with the standard for teachers early in the band to pass students
who have not assimilated the material, essentially guaranteeing that it will have
to be repeated before it can be used later.

To avoid repetition a standard must not only specify the learning goals in
a class, but also enforce discipline in getting it done by specifying that the
material not be repeated in non-remedial classes later in the curriculum. In the
absence of standard curricula, standards documents are the only way this sort
of coordination can be accomplished.

Standards can coordinate content as well as timing. Material learned in
early grades is needed in later grades. Material learned in later grades is needed
in college or the workplace. Unfortunately it is common to find that teaching
methods or simplified problem sets focused on a particular level do not effectively
support the needs of later levels. Standards documents are the ideal place to
address this.

For instance when specifying that multiplication of multi-digit numbers
should take place at one level, the standards might also recommend that this be
done in a way that will support multiplication of polynomials at a later level.
Or when students first learn to factor polynomials they usually see many with
integer roots because these are easy to do. Some students get the unfortunate
impression that quadratics usually have integer roots. A standard could have a
warning about this and require a significant number of problems with irrational
roots.

For standards to be successful in coordinating a program they must be de-
tailed, explicit, and stable.

16.1.4 Process and Outcomes

The discussion above suggests that to be effective a standard should describe
testable outcomes in considerable detail. In some cases testable outcomes and
non-testable supporting activities occur in different courses or grade levels and
organizing this may be part of the job of a standards document. However for the
most part prescribing non-testable activities is likely to be counterproductive:

• Most teachers feel that figuring out how to meet testable goals via non-
testable activities is a pedagogical or curricular issue properly the domain
of teachers.

• On a practical level anything not explicitly labeled “not tested” is a lia-
bility for teachers: there is always a risk that some test writer will figure
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out how to test it in an unexpected way.

• Non-testable goals may act as loopholes through which students receive
credit and advance without acquiring skills. Lower skill expectations are
certainly appropriate for some students but this should be explicit and
managed rather than hidden in loopholes.

As an illustration of the last point, it sounds right to say “understanding is
more important than rote mechanical skills.” However there are several ways to
interpret this. College teachers would take “understanding” to include effective
skills, so an inability to work problems implies a lack of understanding. In
contrast standards documents almost universally use “understand” to mean
“exposed to but not expected to work problems with”. “Know” is frequently
used the same way though occasionally it means “able to reproduce” (as in “the
student will know the formula for the area of a rectangle”) or “able to identify
among three alternatives” (on a multiple–choice test). In this interpretation
“know” and “understand” are not linked to testable skills2.

Students, teachers and parents may reasonably infer that “understanding” is
a separate—and possibly superior—pathway to success, distinct from mere skill
acquisition. They feel cheated that high–stakes tests and college teachers do
not reward such understanding. However when the rubber hits the road in later
courses or real life, the skills needed are the ones that can be tested. Students
promoted on the basis of nonfunctional understanding are at a disadvantage.

These problems can be avoided if standards documents focus on testable
outcomes. Sometimes more careful use of language may help. However this not
the whole solution since legalistic precision often leads to legalistic obscurity,
and is more useful for fixing blame than for preventing problems. A better
approach would be to illustrate every testable expectation with a representative
sample problem, and explicitly link untestable activities to testable ones later
in the curriculum.

16.1.5 Mathematical Structure

The points above are not subject-specific and may apply to other problem-
oriented subjects. Mathematics does have some subject-specific features: first
it is cumulative in that essentially all knowledge and skills learned at one level
will be needed at later levels. Second it has a lot of abstract logical structure.
Teaching mathematics, and therefore any document that structures the teaching
of mathematics, should be consistent with these features.

We expand on the role of structure. In practice most math problems are
routine applications of mechanical skills. These skills really are needed in later
work, and few K–12 students are able to effectively learn abstract structure,
so skills are an appropriate focus. However it is abstract structure that makes
mechanical routines work, and the better they reflect the structure the better

2The lack of agreement on meaning of terms is further explored in Communication between
the mathematical and math–education communities

http://www.math.vt.edu/people/quinn/education/communication.pdf
http://www.math.vt.edu/people/quinn/education/communication.pdf
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they work. Further most students internalize abstract structure if it is clearly
displayed in routine work. This internalization makes it easier to progress to
deeper work based on similar ideas, and eventually to the ideas themselves.

As an example, the arabic digit representation of numbers replaced roman
numerals not because Arabs conquered Romans, but because it works better.
And it works better because it is more closely aligned with deeper mathematical
structure: the same structures used to manipulate arabic-style digits are used
to manipulate polynomials. This is why students taught to work with numbers
using algorithms that cleanly reflect this structure find the transition to poly-
nomials relatively painless. If number work obscures the structure (e.g. with
certain addition tricks, or mechanical aids such as an abacus, slide rule or cal-
culator) then students tend to see polynomials as a new and difficult subject.
They have learned to deal with trees, but without absorbing the viewpoint
needed to see the forest.

K-12 students are not tested on abstract structure so it is up to teachers to
make sure structure is clearly reflected in the materials. Standards documents
could help by making explicit the key abstract structures involved in a particular
topic, pointing out where else these ideas appear in the curriculum, and offering
sample problems that display the structure.

16.1.6 Summary

Ideally a standards document will provide an effective common reference point
for all concerned parties. Specifically:

• Test constructors should see what sort of problems are appropriate, and
further see how problems might probe absorption of underlying mathe-
matical structure.

• Teachers should be able to anticipate tests in detail, and see the underlying
structures (general principles) the tests are supposed to support. Ideally
the document should be more useful for this than a test derived from it.

• Teachers should see with some precision what the students have already
done in earlier courses and so should not be repeated in non-remedial
courses.

• Teachers should see how skills to be acquired in their course—and ways
of thinking underlying these skills—will be needed later. More generally
the document should coordinate connections between the material and the
structure of mathematics.

• Textbook writers should see how to expand the material in ways useful to
students and teachers.

• The focus should be on testable outcomes and content. Methods used to
achieve these outcomes should be left to teachers, curriculum developers,
and other education professionals. In particular the document should not
be, or resemble, a set of lesson plans.
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Unfortunately most standards documents are developed in politicized and often
contentious processes that overlook most of these points and cannot address any
of them effectively.

16.2 More About Tests

High-stakes tests provide enforcement and accountability for the implementation
of standards. They are intended to powerfully influence learning so great care
ought be taken to ensure this influence is beneficial. As with so much else this
is a job that by default falls to the standards document.

16.2.1 Tests as instruments of terror

System-wide tests are typically given once, though a few systems have “sec-
ond chance” administrations. Stakes are high for both students and teachers
so teachers (and occasionally parents) emphasize this to motivate students to
prepare. Stress levels are high. Test formats, grading criteria, and even question
types are different from those typically used in class and this is another source
of confusion and stress.

In these circumstances strong students usually do consistently well and weak
students do consistently poorly. Outcomes for average students tend to be
less reproducible: repeated tries at equivalent tests give scores with significant
spread that seems random. Any given score doesn’t correlate well with anything,
so in particular cannot correlate with learning.

In some communities there is vocal opposition to high–stakes testing, and
the drawbacks noted above are often given as reasons to end it. The reality is
that testing is here to stay, but this does not mean the drawbacks are not real
or not important. Problems should be honestly acknowledged and fixing them
should be an urgent priority for test designers and administrators. However it
is hard to imagine how this could happen without guidance from the standards
document.

16.2.2 Tests as defective standards

Tests are traditionally thought of as assessment instruments and not part of the
educational process itself.

When there is a lot of material assessment tests usually spot–check at ran-
dom: if the student does not know what will be omitted then comprehensive
learning is needed for reliable good performance. Similarly if generic problems
are time-consuming then tests may use artificially simplified cases. If the stu-
dent does not know how problems may be simplified then again comprehensive
learning is needed for reliable good performance.

The traditional disconnect between tests and learning does not hold for
system-wide high-stakes tests. Old tests are available and carefully scrutinized
and new ones are expected to be consistent with them. Tests become de facto
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standards so simplifications or omissions are incorporated in and weaken the
curriculum. The converse to this is that to avoid weakening the curriculum
standard tests would have to be harder and more comprehensive than they are
now. Clearly our approach to testing must change dramatically if this is not to
be a prescription for massive failure.

A related problem is that current multiple-choice tests tend to drive curric-
ula away from abstract and symbolic work. Symbolic expressions have structure
that may give shortcuts to identification of correct answers and it is common
practice to hide such structure by numerical evaluation. πr2 for instance is
instantly recognizable as the area of a circle, while 16.6 is not obviously the
(approximate) area of a circle of radius 2.3. This leads to high-stakes tests
dominated by approximate numerical problems, and this in turn de facto es-
tablishes the goal of the course as success with numerical problems. Students
come out knowing exactly what to do with a problem involving a circle of ra-
dius 2.3, but are stumped by the same problem when the radius is given as “r”.
This is particularly acute in curricula emphasizing use of calculators. These
students have missed the benefits of math as an introduction to abstract logical
reasoning, and are at a disadvantage in college courses.

16.2.3 Tests as suppressors of quality and diversity

In the last 40 years the US K–12 system improved in some ways, going from one
in which many children dropped out to one with a realistic hope that none need
be left completely behind. However there have been costs including a decline
in achievement levels: since the priority is now to get everyone over one bar it
has to be set low. Resources are focused on weak students since they are at risk
of failure and good students are not; a great shift from the Sputnik era goal of
boosting the best.

Declining preparation of high–school graduates has driven a corresponding
decline in post–secondary achievement and American students have nearly dis-
appeared from top achievement levels. Our better graduate schools are popu-
lated by high–achieving students from other countries and our leading scientists,
engineers, and educators are increasingly international. Significant parts of our
way of life are now maintained by importing high-quality K–12 and undergrad-
uate education.

Dependence on foreign educational systems for high–quality preparation is
a threat to our national security and prosperity. Eventually we must do better
with our own good students. Any real movement in this direction would have to
be supported—if not started—by standards documents and system-wide tests.

For example a state might have two levels of tests, say “general” and “college
prep”. A bad score on the college prep test could be converted to a good score
on the general test, so no one would “fail” college prep. College prep tests and
standards would organize development of more-demanding courses and therefore
increase diversity in the system.

It should be emphasized that the need is for better preparation in high–
school subjects such as algebra, geometry and trigonometry, not in topics such



260 CHAPTER 16. DYSFUNCTIONAL STANDARDS

as calculus and statistics. Very few schools have the resources to do a college–
quality job with college–level subjects. Mediocre or mechanical courses (driven
for instance by the AP calculus test) give little advantage to college students,
and certainly do not make up for weak preparation in algebra and geometry.

16.2.4 Summary

Consistency is the overwhelming concern in traditional high–stakes test design.
Tests must be similar in content and scores should be as consistent as possible
from one administration to the next. This is difficult and expensive but test
developers do impressively well at it. In contrast current tests show little or no
evidence of concern for the effect they have on the instructional program. It
may be that design criteria and pressures during the development process make
this impossible, but the end result is a consistently negative influence and no
reason for hope that traditional approaches to test construction will produce
anything else.

16.3 Conclusion

The 2004 version of this article went on to suggest ways to make standards
documents more functional. However at the time of the revision in late 2008 the
NCTM and many states have revised their documents and other organizations
including the College Board have issued Standards, all perpetuating the defects
discussed above. The federal No Child Left Behind regulations has further
polarized and obscured many issues. The National Mathematics Advisory Panel
identified a few of the problems but was unable to come to a firm conclusion on
most of them. It no longer seems reasonable to hope for significant change in
the way Standards Documents are constructed.

It seems remotely possible that good tests could be developed outside the
Standards system, see Beneficial High–Stakes Math Tests: An Example.

http://professionals.collegeboard.com/k-12/standards
http://www.ed.gov/MathPanel/
http://www.math.vt.edu/people/quinn/education/example.pdf


Chapter 17

Math / Math-Education
Terminology Problems

February 2009

17.1 A Search for Meaning

A few years ago a draft K–12 Standards Document arrived at the AMS for
review. This happens from time to time and while as far as I can tell AMS
feedback has no effect, it is flattering to be asked. However this Document was
accompanied by a guide for reviewers that included the question:

“Do the standards specify a range of cognitive skills to be expected, including
some range of the following?

• Remembering: recognizing, recalling

• Understanding: selecting, interpreting, illustrating, classifying, summariz-
ing, inferring, comparing, explaining

• Applying: using, executing, implementing, computing, translating

• Analyzing: differentiating, organizing, attributing, synthesizing

• Evaluating: checking, critiquing, justifying

• Creating: generating, hypothesizing, planning, designing, constructing”

Say what?? Are these ranges of cognitive skills or ranges of synonyms?
Math educators generally reject use of careful definitions so one cannot just

look these up. However there is an extensive literature from which we could try
to infer meanings, and we can see how these things actually play out in students.
Two conclusions emerge: first, as expected, these are for the most part synonyms
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and reflect a richness of language rather than of content. A more troubling
conclusion is that when when these terms do have specific meanings they are
quite different from the meanings used in the mathematical community1.

17.2 Misunderstanding Understanding

Every discipline develops terminology adapted to the discipline. Specialized
meanings for common terms lead to “talking past each other” communication
failures. We illustrate this with the term “understand”.

The mathematical community has evolved a rather strong meaning for “un-
derstand”: roughly “complete mastery” including full facility with working
problems. Weaker meanings have been found to be dysfunctional in the sense
that they do not provide a foundation for further mathematical learning.

The educational community has a much weaker meaning for this term. My
guess is that it reflects something about human learning: people learn some
things (e.g. inferring patterns from examples) quickly and easily. Fixing errors
in this natural learning is a different process and much harder, so it makes
sense to have terms for the first step. “Understand” may be one of these. At
any rate the math–ed meaning for “understand” is closer to “show evidence
of exposure”. Teachers can say “you can’t work the problems but I see that
you basically understand, so I can give you partial credit”. And when students
get to the college level they say “I really do understand it, but just can’t work
problems. Can’t you give me partial credit?”

There are similar mismatches with most other terms. Does “recall the
quadratic formula” mean “know and be able to use the quadratic formula” or
“recall having seen the quadratic formula”? Does “know multiplication facts”
mean “know there is a multiplication table” or “be able to multiply numbers
with facility”? Terms such as “synthesizing”, “justifying”, “creating”, “discov-
ering”, etc. refer to highly-structured activities that have little in common with
the mathematical meanings.

17.3 Right, Wrong or Different?

To a degree these terminology issues can be seen as cultural: they have their
meanings, we have ours, and it is neither necessary nor appropriate to declare
one or the other “wrong”. We just have to be mindful of the differences and
very careful when trying to communicate.

There are, however, cases where one meaning really is wrong. The slogan
“we should put less emphasis on rote learning and mechanical calculation, and
more emphasis on understanding” has strongly influenced math education in
the last few decades. It is certainly very attractive. But remember that there
is a job to be done: students should emerge with a good foundation for further

1For a more detailed discussion with a different objective see Communication between the
mathematical and math–education communities.

http://www.math.vt.edu/people/quinn/education/communication.pdf
http://www.math.vt.edu/people/quinn/education/communication.pdf
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mathematical learning. We are not at liberty to use any convenient meaning for
“understand” but must use one that actually gets this job done. The math–ed
meaning is dysfunctional in this regard and so—in the context of the slogan—is
actually wrong.

I do not believe that use of a dysfunctional meaning for “understand” is an
evil plot designed to cripple higher education in mathematics, even if it is work-
ing out that way. The K–12 system is rather self–contained and the curriculum
adapts to whatever students can do. The failure to “provide a foundation” only
becomes unavoidable and acute at the college level. K–12 educators are pretty
unresponsive to complaints from the college level, but in their defense it must
be said that these complaints are often incoherent.

17.4 Plea

It is important to realize that the real problems will not have terminology so-
lutions. Mathematical understanding is too demanding to be appropriate at
the school level. The mathematically–adapted meaning for “understand” might
make the “understanding, not rote calculation” slogan correct but would also
make it unrealistic. The proper goal may be a mostly-subconscious template
for mathematical understanding. The math–ed meaning will likely play an im-
portant role in it’s development. Making effective sense of something like this
would take deep insights into both human learning in general and the needs of
long-term learning in mathematics. It is likely to require cooperative effort by
both the math and math–ed communities.

Unfortunately, we won’t be able to formulate or agree on the real problems,
much less solve them, until we sort out the terminology issues.
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Chapter 18

Communication between
the Math and
Math–Education
Communities

June 2006, edited October 2008

Introduction

The mathematical community is primarily concerned with developing new math-
ematics and training in the professional use of mathematics. The US math-
education community is concerned with teaching mathematics at least three
hundred years old to the general population. There is not much overlap be-
tween these primary concerns and so—until recently—little need for systematic
communication.

In recent decades the US math–ed community, largely under the leadership
of the National Council of Teachers of Mathematics (NCTM), has developed
an innovative, coherent and forcefully articulated approach to K–12 math ed-
ucation. At the same time students graduating from this system have shown
a significant decline in preparation for technical careers. For decades the US
has imported technical training to make up the shortfall but demand has now
outpaced imports and technical jobs are being exported. This is an impending
national disaster. Being coherent and innovative is not the same as being right,
and the current K–12 program seems to be seriously flawed in this regard.

Part of the problem is that the K–12 focus has been on the weakest students
(No Child Left Behind) at the expense of high–achievers. This focus is so
complete that most math educators either deny there is a high–end problem
(skills are “different”, not worse) or believe that more of the same will fix it.
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The academic mathematical community has to deal with the output of the
K–12 system so is much more sensitive to the problem. Many now believe that
some sort of action is needed. The most vocal proposals have been simplistic and
unconstructive: “game over, return to the 19th century” or “adopt the proven
program used in (country name)”. But attempts at thoughtful communication
have also been unsuccessful.

This essay is concerned with recognizing barriers to communication between
the two communities, and seeking ways to avoid them.

Some of the barriers are linguistic: in the second section we describe the very
different interpretations given to words such as “understand”, “know”, “apply”
and “recall”. But in the third section we suggest that these differences are
adapted to the jobs at hand rather than arbitrary, so they cannot be settled by
linguistic negotiation. Our conclusion is that successful communication on an
abstract or conceptual level will be so difficult that alternatives must be found.

This requires a sharpening of the problem: exactly what is it that needs to
be communicated, and to what end? The first need is to communicate about
preparation of students for success in college and technical work. This is inves-
tigated in the fourth section where we suggest that it might be done on a very
primitive level—essentially annotated lists of sample problems.

18.1 Language differences

Professional communities develop specialized language for precision and clarity.
Naturally, different communities will give terms different specialized meanings,
and while this is an obvious and well–known source of confusion it almost always
takes participants by surprise. For instance a core part of the new math–ed
vision is a shift from drill and rote mechanical work to conceptual skills such
as “understanding” and “knowing” and conceptual activities such as “creating”
and “recognizing”. These goals sound good to everyone but the words have
rather different meanings in the math and math-ed communities. In this section
we describe some of these differences. The next section suggests reasons for the
differences.

18.1.1 Understanding

In the math-ed community “understand” does not imply “able to work prob-
lems with”, while mathematical use includes this and more. We expand on the
differences, then consider the problems they invite.

The use of “understand” as something untestable and distinct from “able to
use” is clear and consistent in recent math-ed literature and many (probably
over 100) standards documents. The Executive Summary of the 2000 NCTM
publication Principles and Standards for School Mathematics provides a useful
and authoritative example. There are 24 occurrences of the word “understand”
in the text, eleven referring to student learning objectives. Ten of these are ac-
companied by a phrase “and apply”, “as well as use” etc. The intent is to clarify
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that students should be able to do as well as understand, but this also clarifies
that “understand” is not taken to include doing. The eleventh appearance is in
the sentence “An understanding of numbers allows computational procedures
to be learned and recalled with ease.” This is one of the few explicit suggestions
of a utility for understanding, but again it is clear that a failure to “learn and
recall” is not taken as evidence of a lack of understanding.

In mathematics “understand” means mastery and certainly includes ability
to work problems. It is correct usage to say “evidently you don’t understand
since you can’t use it effectively.” Non-functional exposure is considered useless
and not given a name.

The difference in usage means any statement containing the word “under-
stand” will be misunderstood. Standards documents often include a phrase like
“understand the quadratic formula”. College teachers think this means “know
cold, be able to recite the formula instantly, apply quickly and accurately, and
translate quickly and easily between the various formulations of the outcome.”
Math educators are more likely to interpret it as “recognize the name and realize
it has something to do with solving equations with a squared term” and expect
that if anything more is intended it would be spelled out.

Awareness of language differences would help but not be a complete solution.
Consider for instance “I would rather my calculus students have a mathematical-
level understanding of algebra alone than a math-ed understanding of algebra,
calculus, statistics and probability” (really!). Educators might understand this
as an assertion about the importance of precision and “fluency” but would not
know what it involves in detail.

18.1.2 Remembering, recalling, knowing

A central tenant of the new vision of math education that memorization is
a superficial approach to learning and should be avoided. A corollary is that
teachers should not require a level of precision that might require memorization.
“Remember” and “recall” implement this idea: they indicate a “bringing to
mind” that demonstrates familiarity but is tolerant of error. This is close to
the meaning in common language where words such as “recite” are available to
indicate “recall with precision”.

The presumption is that students’ “remembering” will become more precise
as their “understanding” grows, and it is better to wait for understanding than
to require memorization. Thus when a Standards document states that students
should “know properties of numbers”, “recall multiplication facts”, or “remem-
ber facts about solutions of quadratic equations” the math-ed interpretation is
that they should not be required to do so correctly. These are not endpoints
but processes that in the fullness of time are supposed to lead to accuracy.

Deliberate fault tolerance does not make sense to mathematicians. Mathe-
matics is empowering only if it is used exactly right, and errors in “recalling”
almost always render it useless. Most of the work in teaching college mathe-
matics is getting students to find and fix errors in their “recollections”. This is
not to say mathematicians are fans of memorization. The author often teaches
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a calculus class that requires use of trig addition formulas. He can’t remember
these formulas, but can derive them in a few seconds from properties of the com-
plex exponential function. He would be overjoyed to have a student who could
do this too, but the realistic and honest approach is to say “you need these;
memorize them”. Indeed mathematical experience is that understanding in the
strong mathematical sense follows from accurate recall and extensive practice,
and cannot precede them.

Some educators acknowledge the need for better “recollection” and the term
“automatic recall” is starting to appear. This does not have an agreed standard
meaning so use of it does not indicate a commitment to anything in particular.
The fact that “memorize” and “recite” are still being avoided suggests that the
outcome is uncertain.

18.1.3 Applying, evaluating

“Applying” and “evaluating” appear in Standards documents in phrases like
“apply math concepts” and “evaluate mathematical statements”. These phrases
are also common in mathematics but indicate activities developmentally inap-
propriate before the second or third year of college. Indeed the shift from
problem-solving to concepts and logical evaluation is the main reason so many
students who start out as math majors change their minds. In this case it
is obvious, at least to mathematicians, that there are profound differences in
meaning in the two communities. The nature of the differences may be less
clear.

Mathematicians use “apply” as a synonym for “work problems with” while
the math–ed meaning is closer to “illustrate”. For instance if the concept is
that multiplication is related to stacking blocks then “applying” might mean
stacking blocks to model a multiplication problem. If the concept is commuta-
tivity of multiplication then “applying” might mean rearranging stacks of blocks
to illustrate this. This clarifies that “applying” is an understanding–enhancing
activity, not a testable skill. Generally the practice in Standards and the edu-
cational literature is that if something does not contain an unambiguous phrase
such as “computational fluency” or “work problems” then a non-testable inter-
pretation is acceptable and probably intended. The examples also illustrate a
mismatch in the meaning of “concept”. Mathematicians think of commutativ-
ity of multiplication of numbers as a property rather than a concept and use
“concept” for higher–level abstractions.

The mathematical meaning of “evaluate mathematical statements” is “demon-
strate correctness or incorrectness”. This is certainly a testable skill. For exam-
ple students might be asked “Evaluate the statement ‘addition distributes over
multiplication’ ”. and be expected to know that to show the statement is false
one should find particular values for which the two sides of the equation give
different answers; and second to be able to find such values. In the math–ed
interpretation demonstrations are “understanding-building” activities and not
expected of students. The most that would appear on a test would be “true or
false: addition distributes over multiplication”.
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18.1.4 Creating, discovering

“Creating” and “discovering” may provide the most extreme examples of mis-
match between the mathematical and math-ed communities. These activities
are very highly valued by mathematicians: the primary requirement for the
PhD degree is that the student demonstrate he is capable of creativity and
discovery. Undergraduate research projects are fashionable but difficult and
extremely time-consuming. How could this possibly be scaled down to K–12?
Mathematicians generally find the whole idea disturbing.

Quite a few math educators suggest that students should “discover” their
own versions of algorithms for multiplication or division. But the standard al-
gorithms are finely–tuned instruments developed with the difficulty and depth
of experience required by the US Bill of Rights. Would government teach-
ers ask students to discover the Bill of Rights? Probably not unless the plan
was to spend half a year explaining why the discovered versions were inade-
quate. Would carpentry teachers show students screws and nails and ask them
to discover screwdrivers and hammers? And if they did, would a shortage of
competent carpenters and an epidemic of carpentry–anxiety be a mystery?

The point is that some things are simply out of reach of student discovery.
The problem goes beyond that however. Professional experience is that 90%
of math discovery is either dysfunctional or outright wrong, and consequently
90% of the effort in effective discovery is spent finding and correcting errors. It
would be truly wonderful if K–12 students could experience this. However few
students are willing to be wrong (and get corrected) 90% of the time and few
teachers have the time or training to guide the necessary diagnosis.

The math-ed interpretation of “discovery” is quite different: either a process
intended to build “understanding” but so tightly controlled by the teacher that
it can’t go wrong, or a less-directed activity that is unevaluated because it lacks
the refinement process needed to be effective. The outcome (e.g. an algorithm)
can be tested but the discovery process itself is not a testable skill.

18.1.5 Teaching vs learning

The final terminology problem is much more profound and concerns location of
responsibility in the educational process. One view centers on students: learning
requires effort and it is their responsibility to put in this effort, or at the very
least not disrupt efforts of others. The other view centers on teachers: teachers
are providers, students are recipients, and if engagement is required then it is the
responsibility of the teacher to develop it. Are teachers “learning facilitators”
or are students “teaching customers”? Are grades “given” by the teacher or
“earned” by the student? On the slogan level, “you can lead a student to
knowledge but you can’t make him think” vs. “if the student hasn’t learned
then the teacher hasn’t taught”.

In the US K–12 system responsibility is placed primarily on teachers. It
is standard practice for teachers and school system to be punished if students
do poorly on state tests. At the college level there is simply no way to avoid
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placing primary responsibility for learning on students. This is incorporated
into the way college teachers think and interpret terminology. As a result even
the words “teaching” and “learning” will cause interpretation problems in K-
12–college communications1.

18.2 Mathematics and learning

In this section we suggest that the dramatically different word usages described
above are adapted to their subjects: there are actually reasons for them. The
mismatch is not simply linguistic and cannot be solved by linguistic compromise.

18.2.1 Mathematics

The demanding nature of mathematics is suggested by the fact that it was an
organized subject of study for three thousand years before it really got off the
ground. Mathematical conclusions are like legal documents: powerful if fine
print is satisfied and loopholes are avoided but you can lose your shirt if you
make the smallest mistake. After three thousand years of lost shirts we figured
this out and learned to read and write fine print. Mathematics did not become
routinely successful as a profession until this was incorporated into community
norms. “Know” and “understand” came to mean “so intimately familiar with
the fine print that blunders are minimized”. Rigorous standards made math slow
and difficult and were resisted by many mathematicians during the changeover,
but they were enforced by mathematics itself. Sloppy people were less effective
and ended up marginalizing themselves. It took a century of such reenforcement
for rigorous standards to win general acceptance.

The seeming ridiculously high standards of modern mathematics are simply
what it takes to be successful, not a conspiracy to shut out non–members.

18.2.2 Human learning

People see patterns and connect facts quickly and with little effort. This in-
stinctive facility is thought to have developed because it enhances survival in
dangerous situations. Inevitably many of these patterns and connections are
incorrect, but people do not recognize and correct errors either quickly or eas-
ily: the persistence of superstition and gullible belief is well known. Apparently
error correction does not enhance survival.

People also have difficulty understanding abstract explanations of patterns.
It is frequently more effective to provide examples and hints and let them find
the patterns themselves.

Effective learning requires finding and fixing errors in natural learning. Young
students need help with diagnosing errors. Learning to do this oneself is the key
to effective learning at higher levels. At the highest level mathematicians need

1For an extended discussion see Teaching vs. Learning in Mathematics Education.

http://www.math.vt.edu/people/quinn/education/TeachingVsLearning.pdf
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such accurate and reliable understanding that they must learn to vigorously
test—almost attack—the impressions coming from natural learning.

18.2.3 Math education

“Learning” in US math education seems to correspond to the “natural learning”
described above. It makes sense to have a term for this because there is quite a
change of gears between this and the more disciplined error-correcting phase. It
does not make sense to have no terminology for, or even awareness of, the later
phase.

Disciplined areas regard natural learning as only a starting point for under-
standing and knowledge. The US educational community has taken a different
approach: redefine “understanding” and “knowledge” in a sufficiently fault-
tolerant way that natural learning is nearly sufficient. Some error–correction is
still needed but instead of doing it explicitly the US practice is to cycle through
the natural-learning process multiple times. This sets some students more firmly
into bad habits and is a mind–numbing waste of time for the ones who got it
right the first time, but does give some improvement in the middle.

Lack of concern for errors in learning seems to pervade the profession. El-
ementary math textbooks are packed with distractors and intellectual content
is diffused. The distractors are supposed to maintain interest and enrich the
learning process. They also increase the error rate. The error–tolerance of the
math–ed community is so great that either they cannot see this or they regard
it as a good exchange for “enrichment”. Error tolerance makes educators’ job
easier and reduces the effort required of students but it also largely cuts students
off from areas requiring high-precision knowledge.

How can error tolerance coexist with something as black-and-white as a math
test? Not well. US students fare poorly in international comparisons. Statewide
high-stakes tests are causing dislocations, though this is softened by the political
need to set standards low enough that most students pass. To improve grades
teachers can use simplified problems and standard phrasing in classroom tests.
Credit for routine homework with low quality control provides a buffer against
low test scores. Valuing “knowledge” etc. provides a loophole: teachers can say
“I can give you credit even though you can’t work problems because I see you
basically understand it”. Finally calculators have been a godsend: students can
be trained to get good numbers via keystrokes without a disciplined grasp of
detail.

There is an historical explanation for error-tolerance that long predates the
NCTM vision. The old view that mathematics is good training in disciplined
logical thinking is explicitly not error-tolerant. About a century ago some US
educational leaders asserted that elementary mathematics should focus on and
be valued for it’s applications. This may have been a mistake. There has been
a decline in disciplined logical thinking in US society, and elementary math is
now personified to many people by bizarre and contrived word problems. In any
case math education was released from the constraints of rigor. Moreover this
happened so many generations ago that it is deeply ingrained in the mindset,
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literature, teacher training methods and community standards. Any change will
be slow and painful.

18.3 Communicating about student preparation

We have argued that terminology and mindset differences are too great for ab-
stract statements such as “students should know how to solve quadratic equa-
tions” to be successful. Here we outline a more concrete and direct approach.
This has been arrived at by a process of elimination—anything else seems likely
to fail—but it has a number of other significant benefits.

18.3.1 Quadratic example

18.3.1.1 Task

Students should be able to recite the quadratic formula and use it to find exact
solutions to quadratic equations with either numerical or symbolic coefficients.
For instance:

Solve the equation 2x2 + ax − 5a2 = 0 for a in terms of x. Use this to rewrite
the left-hand side in the form −5(a−R)(a− S).

(A real-life treatment would continue with many more examples.)

18.3.1.2 Annotation

many mathematical procedures require solving an equation. (Examples: find-
ing extrema, intersections of curves, solutions of some differential equations.)
Quadratics are one of the very few general classes of equations that can easily
be solved so they are heavily used in examples and problems. Students who can
work with quadratics easily and without much thought will be able to focus on
the new material. Students who have difficulty with quadratics will constantly
find this a barrier to further learning.

18.3.2 The general pattern

The core of a document intended to communicate goals would be an extensive
list of sample problems. These problems would be selected to illustrate key
points: the example above illustrates that coefficients might involve symbols;
that roots may be irrational and also involve symbols; and that the variable
being solved for may not always be called “x”. There should be notes explaining
why such problems are important; how they may be used; abstract principles
underlying them; and so on, but the notes should be clearly subordinate to
the problems. Alternate interpretations of notes does not justify simplifying or
discarding problem types.

The web site of the AMS Working Group on Preparation for Technical Ca-
reers, http://amstechnicalcareers.wikidot.com is an attempt to implement this
idea.

http://amstechnicalcareers.wikidot.com
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18.3.3 Benefits

The first virtue of this approach is that it avoids the modes of failure identified
in earlier sections. This alone would make it worth pursuing, but it seems to
have some significant further advantages.

18.3.3.1 Neutrality

The math-ed community has learned how to teach K–12 math. The mathe-
matical community believes this learning is flawed and needs correction. Error
correction may be a routine part of mathematical culture but it is not in math
education. Teachers as well as students worry about the difference between “you
have made an error” and “you are stupid”; between being offered correction and
being disrespected. Linguistic differences exacerbate this.

Problem lists provide a neutral meeting place for the professions. Math-
ematicians can formulate goals without judgmental overtones or misinterpre-
tations. Educators can see for themselves what the core concerns are, and
formulate these conclusions in their own language.

18.3.3.2 Focus on outcomes

There is always tension and confusion between process and outcome. It is faster
and easier to say “do this and you will come to the right place” rather than
carefully describe the “right place”. But the fact that it is faster means it is
more susceptible to misunderstanding, and the fact that it is easier makes it
more susceptible to error. It should bring focus and clarity to the process to
undertake describing the “right place” concretely in terms of sample problems.

Focus on problems would also help the mathematical community develop a
coherent position. “Mathematicians” are not a coherent group with uniform
views: there is a great deal of shared culture and agreement on general princi-
ples, but agreement disintegrates quickly as one gets into specific issues. The
community lacks mechanisms for developing agreement and in particular lacks
the forceful and articulate leadership provided by the NCTM in the math–ed
community. However most of the disagreement concerns process or terminol-
ogy: the right way rather than the right outcome. Mathematicians will probably
agree that certain sample problems are good even if they disagree on why they
are good.

18.3.3.3 Professional autonomy

Mathematicians have no business dictating in detail how K–12 math should be
taught. They can and should specify the outcomes they need as a basis for
further education. They can further describe interconnections of patterns and
flow of mathematical ideas that might make teaching easier. If educators find
these ideas useful they will use them but they should not be ordered to use
them.
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For instance mathematicians might specify—through sample problems—that
students be able to multiply and divide polynomials “with facility”. They might
further point out that the algorithms used for long division and multiplication
of numbers are also needed to divide or multiply extremely large numbers using
calculators or computers with limited digit capability, and again for division or
multiplication of polynomials. Students who learn the simpler versions early
may find the steps up in complexity or abstraction relatively easy, while those
who come to the advanced versions without preparation will find them difficult.
Educators may find this a convincing reason to return the algorithms to the
early curriculum, or they may prefer to experiment with ways to tackle it later.
As long as they accept the final goals and get the job done it shouldn’t matter.
The process should be up to educators and not dictated by mathematicians.

Those who observe that dictatorial control worked well in Soviet math ed-
ucation should realize this was a matter of great luck in choice of dictators.
The same dictators forbade the teaching of evolution and essentially destroyed
effective biology outside the biological warfare programs. Dictatorial control of
process is considered a failed management model and one successful example
does not change this.

The need to be persuasive—rather than imposing solutions by fiat—may
also encourage mathematicians to be a bit more clear and coherent.

18.3.3.4 Testing

High-stakes statewide tests are nearly universal and national tests seem increas-
ingly likely. Preparing students for these tests has become a matter of personal
survival for many teachers. They need to know what the students will face
and what is needed to prepare them. In principle this information is provided
in Standards documents. In practice there is such a gap between the abstract
goals in Standards and problems on tests that they are useless and old tests are
de facto the authoritative guides.

The other side of this coin is the dilemma facing test designers. Ostensibly
tests should reflect goals set by Standards documents. However these goals are
so vague and inflated that this can’t be taken seriously and again old tests serve
as the main guides. The Standards document itself is effectively removed from
the process and any intellectual content is lost.

A great virtue of a goals document organized around sample problems is that
it connects clearly and directly to tests. For teachers the phrasing “students
should be able to work problems like the following” becomes “test problems
will be like the following”. For test designers, explanations of what the sample
problems are supposed to illustrate become instructions on how they can be
varied while accomplishing the same goals. The results should be better tests
and better student preparation for them.
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18.4 Conclusion

We have argued that annotated problem lists would be an effective way for the
mathematical community to communicate goals for student preparation in K-
12. More than that we have argued that other—more “conceptual”—approaches
face such severe obstacles as to be a waste of time. The mathematical community
should undertake the development of such lists as soon as possible2.

2 An attempt can be found at http://amstechnicalcareers.wikidot.com.

http://amstechnicalcareers.wikidot.com
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Chapter 19

Evaluation of Methods in
Mathematics Education

March 2006, revised October 2007

Introduction

The research community devoted to the learning of mathematics has grown
significantly in size and professionalism but it has not grown in success. In this
article we suggest reasons for this, and in particular argue that the way new
ideas are developed and evaluated has channeled the enterprise in unproductive
directions.

Many of these conclusions come from work in a large computer–learning fa-
cility (over 6,000 students, 500 computers) developing computer–based courses,
computer–tested classroom courses, and computer–lab additions to traditional
courses. The big issues came not from computers per se but from the environ-
ments they provide. Traditional classrooms herd students down a single path
and provide many tools to keep them on it. Computer environments necessar-
ily give students more control. Factors that are locked together and invisible
in classrooms come apart and must be understood separately. The author has
spent most of the last decade trying to understand these new learning envi-
ronments. Experience from 30 years of traditional teaching turned out to be a
minefield of preconceptions rather than a useful guide.

This article describes flaws that seem to be common in math education
research and curriculum development. §19.1 concerns important factors omitted
from evaluations; §19.2 lists dangers of evaluation on the basis of method rather
than outcomes while §19.3 describes dangers of incautious use of statistics when
outcomes are analyzed. Finally, §19.4 concerns problems caused or obscured by
a focus on teaching rather than learning.

277
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19.1 Missing Criteria

Here we describe factors that play crucial roles in success or failure of educational
programs but are not considered in evaluations.

19.1.1 Resources

The main reason “good” educational experiments flop in practice has to do with
resources. Education has a limited budget and the task of educators is to do
the best they can with the means provided. Since educators have no influence
on resources there is generally no point in thinking about them. But this is a
dangerous blind spot: new methods that require more resources are nonstarters,
and neglecting costs in evaluations will miss this.

For instance imagine a new way to teach fractions is shown to significantly
improve outcomes. Teachers are urged to adopt the method and parents and
administrators are led to expect that great things can be accomplished. But as
is often the case the improvements were accomplished in intensive sessions with
fewer than fifteen students. There is not much hope the method would work
in a typical large attention-span–challenged class, and no particular reason to
think that lavishing such resources on other methods would not work as well.
The high expectations are unrealistic and attempts to widely implement the
method will lead to (yet another) failure.

If resource costs were tracked and factored into the evaluation then a small-
scale study like the example above would be considered at best a pilot project
needing large-scale field testing. Investigators should develop indicators for
successful scaling, or do medium-scale trials before considering the project com-
plete. This would be harder than current practice and there would be fewer
“successful” small projects, but long-term impacts would be greater.

19.1.2 Student effort

Student effort—and a student’s willingness to expend effort—seems to be a
crucial factor. This is an unexpected conclusion and we have no suggestion as
to how these might be measured, but we describe the problem.

19.1.2.1 A behavior model

We offer a simple model to explain certain patterns in student behavior. This
can at best be a rough guide with myriad exceptions, and in a later section we ar-
gue that assuming students have common features can be dangerous. Nonethe-
less the model encapsulates a lot of painful experience and offers insight into
some difficulties in educational research.

The model is this: students see a grade as their objective in a course. They
come to the course with a target grade and an “effort budget” they are willing
to expend. They work until they either reach the target grade or expend their
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effort budget. If they hit the target grade first then they quit and get extra free
time. If they hit the effort limit first then they quit and accept a lower grade.

Put another way, it is rare for a student to either put in extraordinary effort
to get a good grade or, if a subject is easier than expected, keep working after
reaching a target. Both do occur of course, but not often enough to invalidate
the model as a predictor of bulk behavior.

This model has both explanatory and predictive value, and we explore it
below.

19.1.2.2 Standards versus success

It is well–known and obvious that performance of successful students can be
improved simply by raising standards for grades. The drawback is that fewer
students will be successful. The model suggests that students who quit because
they reached their target grade will work more if standards for that grade are
increased. Students who reached the limit of their effort budget will accept
lower grades. Educators try to balance standards and failure rates, although
views on the proper balance has changed quite a lot over time.

Pressure to avoid dropouts and high failure rates has driven a lowering of
standards. Most students hit their target grade before their effort maximum.
This has consequences at the next level: not only have lowered standards left
students less well-prepared, but ease of success has led them to revise their effort
budgets downward.

Most students are capable of, and willing to do, better work. It follows that
having several tracks with different standards could improve outcomes, partic-
ularly at the upper end where our system is weakest. However the argument
above suggests track selection should be based on willingness to work rather
than past performance or innate ability. It is certainly unclear how this might
be measured but it is a worthwhile research topic since the potential payoff is
enormous. Also tracking by ability or performance is politically unpopular, and
tracking by willingness to work (if it can be measured) might be more accept-
able.

19.1.2.3 Equivalent outcomes

A frequent experience with full-scale trials is that different methods have statis-
tically equivalent educational outcomes. By this measure there is no basis for
preferring one to any other. However the behavior model suggests that there is
a reason outcomes are similar and that some methods may have benefits that
are not being measured.

Suppose two method are being compared. One enables students to achieve
a given level of mastery with less effort, but the trial is “fair” in the sense that
fixed achievements are required for a given grade. According to the model,
students who are already reaching their target grade won’t do better but will
benefit through reduced effort. Since most students are in this group we expect
very little overall outcome improvement. Thus equivalence of outcomes should
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be an expected consequence of student behavior, not a reflection on program
quality. If we want a clear indicator of program value we apparently must figure
out how to measure student effort.

The end objective is still better outcomes. In this view this would be accom-
plished in two steps. First compare methods but look for reduced effort (if it
can be measured) rather than better outcomes. Then, after implementing the
more efficient method, increase standards to bring effort requirements back to
previous levels.

19.1.2.4 Work ethic

It is obvious that students’ willingness to work is a major determinant of out-
comes. The arguments above suggest that as a side effect it also tends to hide
or distort other factors. Is this a fact of life, or does it just emphasize the old
point that part of a teacher’s job is to engage students and get them to work?

Sadly, work ethic is one of the things eroding from the American character.
Students are increasingly unwilling to work and harder to engage. On the whole
teachers will be unable to slow this decline let alone reverse it. There have been
examples of teachers who dramatically inspired their students, but they are
rare enough to become subjects of major motion pictures. Blaming teachers is
a prescription for failure.

19.1.3 Procrastination

Everyone knows procrastination is a problem and traditional courses are packed
with preemptive measures against it: constant checked homework; frequent
quizzes; lots of major tests; and generally so structured that students who aren’t
working can be identified and hassled. On the other hand no one seems to
measure procrastination directly and there has been little thought about how
it might effect new approaches to education. The problem described here may
seem obvious but recognizing it was a surprise outcome of years of data mining
in a relatively unstructured course: the only measure that correlated strongly
with failure turned out to be a proxy for procrastination.

Many new approaches to education lack traditional defenses against procras-
tination. For instance a student might be allowed to choose from a variety of
tools to accomplish a task, rather than be forced to do it a particular way. But
the consequence of not checking use of a particular tool is that it is hard to know
if any tool is being used. This problem can be acute in computer– or web–based
assignments where—for better or worse—students must play a more active role
in the learning process. Procrastinators fare poorly in such environments.

For another example consider the common complaint that most homework
is pointless busywork. An alternative when there is a well-defined task (e.g. a
kind of math problem) is to provide plentiful examples, give instructions to work
examples until they can be done reliably, and a deadline. The ability to quit
when ready provides motivation and a payoff for fast and accurate learning, and
many students respond well. Procrastinators tend to put it off until too late.
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Generally we can expect that any increased reliance on student initiative
or reduction of lockstep control will show mixed results: non-procrastinators
may do better but procrastinators will do more poorly. This is a problem we
are stuck with: chronic procrastination is either a character trait or so difficult
to unlearn that it might as well be. It may be a limiting factor in how much
choice or control can be given to students. Alternatively it might be possible
to identify chronic procrastinators and provide them with a more supportive
(i.e. constricted) environment.

Finally we contrast procrastination with the limited work budget problem
discussed above. In a fixed environment the distinction is not useful: students
who wait until they don’t have time to do the work may as well not be willing to
do it at all. The difference becomes important when the environment changes.
Giving students more control should benefit non–procrastinators with low work
budgets but be counterproductive for procrastinators.

19.2 Process as a criterion

Educational approaches are often evaluated on the basis of methods used rather
than outcomes. This is easier and faster, and is a reasonable proxy for outcomes
if similar methods have been carefully evaluated in similar areas and have had
good outcomes. It is an appropriate way to design new approaches as a starting
point for development and testing. Unfortunately process evaluations are mis-
used more often than not. It is particularly dangerous to have an ideological
attachment to a Good Thing and “know” it will improve any program.

19.2.1 Multimedia

Video and animations are considered a Good Thing. They have wide and sat-
isfactory use in some subjects, and any proposal that includes them gets extra
credit. However the successful uses are in subjects with low expectations for
testable outcomes. The generalization that these are Good Things in any area
has turned out to be false: they are much less unsuccessful in areas that require
concentration and have high testable outcomes.

Our students are very accomplished spectators. The entertainment industry
has shortened their attention span and trained them to suspend critical thinking
while in spectator mode. The advertising industry has forced them to avoid
learning while in spectator mode. Consequently spectator mode is an enemy
of serious learning. Anything that triggers it, including almost anything that
moves on a screen, is likely to seriously degrade math learning.

19.2.2 Technology as a goal

A common process goal is that a course should “use technology.” The process
has been taken as the outcome goal as well, and there are no educational out-
comes to be assessed. This guarantees positive evaluation of the course, but
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probably also guarantees that nothing of real value will come of it and any bad
consequences will be overlooked. Some examples:

• Internet use is a common process goal. The justification offered is “it is
important for students learn to use the tools of the information age.” This
might make sense if the goal was “learn to use the tools well.” The internet
has a low signal to noise ratio and the ability to filter and critically assess
information would indeed be valuable. Students are not learning this, and
will not as long as use alone is the goal. It is true that even professionals
have difficulty with critical assessment, and an attempt to teach school
children these skills would almost certainly fail an honest evaluation. But
the difficulty of finding realistic outcome goals does not justify dodging
the issue.

• Computer (as opposed to calculator) use in math is sometimes taken as a
goal with justification “computers have transformed real-life use of math-
ematics and we should prepare our students for this.” However computers
have made math more powerful, not easier. In fact effective computer
use requires quite a bit more discipline and sophistication than standard
by-hand work. Computers can solve many standard problems in a few
keystrokes. But learning keystrokes instead of tedious hand methods puts
students further away rather than closer to the sophistication needed for
effective computer work.

• Visualization is a particularly attractive use of computers and a prominent
feature of programs with “computer use” as a goal. It seems to have few
benefits beyond pretty pictures. At the high end, an NSF-funded institute
was established to determine if direct visualization could be a useful tool
in mathematical research. The answer was “no” and when the institute
was unable to find a more productive focus it was disbanded. At lower
levels the experience is that people have to know what they are looking
at before they can see it. In mathematics, at least, visualization seems
to have limited use as a primary learning tool, but this may not become
apparent until evaluation criteria graduate from any use to effective use.

A problem common to these examples is that the error-correction part of
learning has been completely omitted. See the final section for further discus-
sion.

19.2.3 Trendy methods

“Discovery”, “Reform” and “Standards-based” methods seem to be popular
now. The danger here is that exciting ideas, sometimes demonstrated in pi-
lot projects but not tested on large scales may be prematurely adopted. In
some cases there have been large-scale adaptations but such extensive changes
were needed that the name is the main similarity to the pilot program. Or
the materials were used in a course with different methods. All too often these



19.3. OUTCOME MEASUREMENT 283

modifications are overlooked and success is taken as validating the original vi-
sion. Even though they have actually failed to scale, the methods are used as
the basis for process evaluations.

19.2.4 NCTM Standards

The most remarkable example of the use of process standards is the evaluation of
math curricula according to how well they conform to the 1989 National Council
of Teachers of Mathematics (NCTM) standards. This has been so widespread
that curricula and standards documents nationwide have been profoundly influ-
enced.

Use of process standards as a proxy for outcomes is reasonable when the
processes have been shown to have good outcomes. Thus if the NCTM standards
had been a distillation of best current practice then a push for general conformity
would have made sense. However large parts of the NCTM document were a
bold attempt to chart the way to the future rather than a distillation of the
past. It was a research agenda rather than a finished product, and pushing for
implementation before large-scale evaluation was a procedural error.

These standards have been at least partially implemented on the widest pos-
sible scale over the last decade and a half. For better or worse, a large-scale
evaluation is now possible. Many outcomes, for instance degree of preparation
for university work, have declined significantly. By presenting it as a finished
product the promoters raised the stakes and narrowed the outcome to pass/fail.
By the rules they themselves have established it seems to be a failure and contin-
ued promotion has triggered a backlash. Unfortunately the process of correcting
large-scale failure may also sweep away any potential value as a research agenda.

19.3 Outcome measurement

Standard protocols for experimental design and assessment have developed as
educational research has grown as a discipline. The most sophisticated have
taken clinical trials in medicine as a model. This seems appropriate since both
medicine and education have to deal with the worst possible experimental sub-
jects, people.

The ideal educational trial begins with a method to be tested and specific
outcomes (e.g. question types) that the method is expect to influence. To avoid
questions about “changing the target after the arrow is shot” there are usu-
ally advance decisions about how the data is to be analyzed and how various
outcomes will be interpreted. The trial itself involves two groups of students,
one using the new method and one with a standard or control method. Data
is gathered. Frequently there is an analysis of student characteristics to check
for bias in the division into groups. Finally there is a statistical analysis of
the outcomes. The care and sophistication of the statistical analysis is often
taken as a key indicator of the value of the study, so this analysis is often quite
elaborate.
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It is unfortunate that this tidy experimental design will almost never give
useful conclusions. Even if it worked exactly as expected the outcomes would be
problematic because crucial parameters have been neglected, as explained in the
first section of this article. But the experimental design itself is unreliable. The
medical community discovered and adjusted for this long ago. The educational
community needs to do so as well.

One conclusion is that educational research is still in its infancy. Recent
attempts to be more “scientific” have not actually made the field more mature
and effective.

19.3.1 Student variation and statistics

Statistics only gives an accurate picture when all students will be effected in
roughly the same way: “one size fits all.” This is rarely the case, and we describe
instances where modest overall improvement resulted from big improvement in
one subpopulation of students canceling a big decline in another. The medical
analog is the strangely belated realization that males are different from females
and that there are environmental and genetic differences between ethnic groups.

The point made above is that a different approach to data analysis is needed
when there are subpopulations with different educational needs or responses.
It is also unclear how the data would be used. Rejecting methods that favor
one subpopulation over another would probably leave us with no educational
program at all. Offering different methods to serve different subpopulations
might be effective but would require great care in how people are assigned to,
or allowed to choose, different methods.

19.3.1.1 Modes of thinking

People learn through three main channels: visual, auditory and kinetic/tactile.
They tend to have dominant learning channels just as they have dominant hands
(left or right). At one time this was well known and a principle topic in educa-
tional research. The awareness has all but vanished, possibly because it conflicts
with the homogeneity hypotheses needed for statistical analysis. The fact has
not vanished however, and educational methods that emphasize one channel will
still favor one of these groups over the others.

For example not long ago reading was taught largely visually through pat-
tern recognition of letters and words. Proponents of this approach were either
unaware of the needs of auditory and kinetic/tactile students or expected them
to adapt much like left-handed students were once required to write with their
right hands. The program may have been effective in some average way but
outcomes for primarily–auditory students were unsatisfactory. There were sig-
nificant numbers of high–school students with very weak reading skills. This
drove a resurgence of phonics approaches that favor these students. If phonics
turn out to be unsatisfactory for primarily–visual students we may see a swing
back to visual methods.



19.3. OUTCOME MEASUREMENT 285

At this point it might seem obvious that the solution is to offer both ap-
proaches and let students use the one that works best for them. This also has
problems, with resources and placement for instance, but the show–stopper is
the conflict with dominant dogma.

How do strongly kinetic/tactile students fit into the various reading pro-
grams? Generally poorly. Some adapt and go on to become surgeons, or in the
author’s case, a topologist. In the past many who could not function “right-
handed” gravitated to trade schools or apprenticeship programs, or dropped out
to work. These alternatives are now considered “left behind” and the students
are retained in standard school programs. Consequently we expect to still see
significant numbers of high-school students with weak reading skills. Any group
likely to have kinetic/tactile orientations, athletes for instance, should be heav-
ily represented in this group. Maybe athletes are not dumb after all, but are
just not served by current programs.

Learning-channel differences may pose serious problems for web or computer-
based educational materials. Current materials are intensely visual. Does this
render them inaccessible to significant numbers of students with auditory or
tactile primary learning channels? Current analytical techniques can’t even see
the question.

19.3.1.2 Placebo effects

Small-scale trials almost always have positive outcomes even when large-scale
trails with the same methods are unsuccessful. Students do better in small
groups and they respond to extra attention and the instructor’s expectation
that something good should happen. The medical analog is the placebo effect
and it regularly swamps information about the drug or procedure being tested.
The medical solution is the double–blind trial, but this is rarely feasible in
education.

If small trials have predictable and meaningless evaluations do they have any
point? Perhaps they should be formative rather than summative. Instead of
conclusions like “the method works” perhaps “with the following modifications
we feel the method is ready for large–scale trials.” Perhaps the problem is not
the use of statistics but insufficient caution, wisdom, and humility about what
the numbers tell us.

19.3.1.3 Cultural and behavioral bias

“Avoid cultural bias” is usually taken to mean “replace ‘cow’ and ‘chicken’ with
‘dog’ and ‘pidgeon’ because the population is now largely urban.” Or “be sure
‘guns’ and ‘dolls’ are evenly represented in word problems.” Avoiding behav-
ioral bias takes forms like “behavioral difference are normal and teachers should
deal with it.” However some biases are not education–neutral and avoiding or
ignoring them can compromise the validity of a study.

There are subcultures that highly value education and whose students are
willing and well-prepared, and subcultures that find education irrelevant and
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demeaning and whose students are unwilling if not disruptive. There are stu-
dents who need medication before they can control their behavior. Does “avoid
bias” mean “do not report the effects of disruptive students”? Or worse, does
it mean “do not report that disruptive students were excluded from the experi-
mental group”? In any event there is essentially no discussion of disruption in
the math–ed literature even though math is probably one of the most vulnerable
subjects.

Disruptive students degrade any educational environment and will com-
pletely defeat some approaches. Other cultural or individual differences may
impose other limits. It is not clear what, if anything, could be done about
this. The point here is that we cannot know the real potential or limits of an
educational method if these factors are ignored, and current methods ignore
them.

19.3.1.4 Sample size

Many trials reported in the education literature are small, with as few as a dozen
students. The hope is that sense can be extracted through careful statistical
analysis. This would be doubtful in a physics experiment with uniform particles
and is silly when dealing with people. How big should a statistically analyzed
trial be?

The author analyzed a multi-section college calculus course with enrollment
between 900 and 1400 per semester, divided roughly evenly between two teach-
ing methods and tested with a common final exam. This was done for six
semesters with a total of around six thousand students. Amazing variation was
seen. Three subpopulations with different characteristics were identified and
there were differences due to class size and teacher effects. However most of the
variation remains mysterious and considerably exceeds what would be expected
from random distribution. For instance one class of over a hundred students
had an unusual outcome pattern, significantly different from other classes with
the same teacher or the same size. There are group effects such as an attitude—
good or bad—“infecting” a class, but we are wary of this as an explanation
for such large differences in such large classes. We do not have an explanation,
much less a way to anticipate or correct for this.

The conclusion is that there is far more variation in educational trials than
would be expected if the underlying assumptions of statistical analysis were
valid. A thousand students may not be enough to ensure reproducible results.

19.3.1.5 Limited imagination

The final criticism of the standard measurement protocol concerns deciding
beforehand what to measure and what it should mean. It is always hard to find
something one is not looking for but this practice makes it impossible. Education
is too complex and human imagination too limited for this to be acceptable.
Most of what the author has learned about education—nearly everything in this
article—was originally well beyond his imagination. It was not clever prediction
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borne out by trials, but ignorance slowly and often reluctantly dispelled by
confrontation with data.

The alternative to prior decisions is data mining after the fact. The prob-
lem with this is artifacts. Randomly comparing lots of things always produces
coincidences, so lots of unexpected connections will emerge but most of them
are bogus. Further trials or analysis are required to eliminate bogus conclusions
and sharpen real ones. This is much more trouble than running data through a
statistical program but it may be necessary for real progress.

19.3.2 Goal selection

Returning to the theme of problems with measuring outcomes, we consider
how goals are selected. Courses and lessons are part of an intricate whole,
not free-standing entities. Goals that make sense in a limited context may
either advance or undermine work at later levels, and bad choices can give great
immediate outcomes but greater damage later on. Mathematics is particularly
highly interconnected and vulnerable to goal-selection errors, and we describe
some common ones.

19.3.2.1 Calculators

Memorizing the multiplication table is a pain and long multiplication and divi-
sion are dreary. Calculators offer relief. If “accurate arithmetic” is taken as a
goal then calculators are a winner. If student joy is factored in then calculators
look like the best things since sliced bread. Unfortunately the view from the
college level is that calculator-trained students often have significantly weaker
number sense and other deficits, described below. Calculator use urgently needs
to be reconsidered in spite of the glorious short-term outcomes.

Does this mean we should go back to multiplication tables? Not necessar-
ily. For instance calculators now use keystrokes and connect directly to the
motor/tactile learning channel. Perhaps tactile thinking is bad with numbers.
Many students learn the multiplication table by verbal repetition so perhaps we
need a connection to the auditory channel. If so then calculators with verbal
data entry might solve the problem. Or if an extended expression could be en-
tered and visually checked and edited before execution perhaps it would connect
with the visual channel.

Ironically there may be problems due to an insufficient connection to the
motor/tactile channel. Graphing calculators give students quick and accurate
access to graphs of functions. They see these graphs many more times than
students once did, and become adept at picking out a particular graph from
alternatives on a test. On the other hand they have never drawn these curves
with a pencil. When they get to multivariable calculus and have to sketch solids,
or work out regions of integration, they cannot draw graphs. They also cannot
articulate qualitative features (e.g. an exponential function swoops up really
fast). Does this mean we should give up graphing calculators? Not necessarily.
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It may be sufficient to require students to draw a picture as part of coursework
and testing.

The points are that solutions at one level may lead to problems downstream;
and that seeing this and finding long–term solutions might require thinking (or
following data) far outside our preconceptions. If we cannot rise to this challenge
then we probably should return to multiplication tables, at least for students
we want to be capable of pursuing technical careers.

19.3.2.2 Over-simplification

Over-simplification of problems used to train and test students at one level can
cause problems later. We describe three examples.

• Multiplying polynomials or other compound expressions is a standard
task. When this is first encountered the focus is on the simplest case:
two binomials, (a+ b)(x+ y). It is common for teachers to introduce the
mnemonic “FOIL” for the algorithm in this case. This increases speed and
accuracy with binomials but formulates it in a way that does not general-
ize to larger expressions, and these students often have trouble multiplying
trinomials. Describing the process in terms of associativity and distribu-
tivity may require more practice and be slower but it would make the step
up to bigger problems completely routine.

• Finding roots of a quadratic corresponds to factoring it as (x− r)(x− s).
For simplicity this is usually illustrated and tested with quadratics with
integer roots. But most quadratics do not have integer roots, and students
taught this way often have trouble dealing with these when they come up in
later courses. This is a much bigger problem than might be apparent from
the K-12 perspective. Many methods and applications of mathematics
require solving for a variable. Quadratics are one of the very few families
of equations that students can easily solve and so are heavily used in
examples and problems in college courses. Consequently any student who
has trouble with quadratics is at a serious disadvantage.

• At a higher level, most high-school calculus courses are oriented toward
preparation for the AP calculus test. Problems on this test are simplified
and routine, so the course goal is to deal quickly and accurately with
routine problems. Lots of mnemonics and tricks are used and the whole
thing is rather mechanical. High school teachers, and more to the point
AP calculus test designers, probably do not know that quite a lot of a
science/engineering college calculus course is devoted to getting students
to unlearn some of this.

19.3.2.3 Symbols and numbers

In K-12 work in recent years there has been a substantial increase in decimal
numerical tasks and a corresponding decrease in symbolic, integer, or rational
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problems. Calculators drive some of this. Teachers may believe that numbers
are the real goal; symbols are just placeholders for numbers, and now that we
have calculators we can do the real thing. Students can work with circles of
radius 5.687 rather than “r”. Or a fraction like 2

3 is a frustrated division, and
we can now carry it out to get a “real” answer., 2

3 = 0.6666. Perhaps using
numbers is supposed to convince students that the problems have “real–life”
significance. Maybe teachers have such an investment in developing calculator
skills that they want to use these at any opportunity. In addition to any of this,
teachers are also responding to pressure from high-stakes tests as we describe
below. In any case calculator use has blossomed.

In college courses we now see students who have trouble dealing with prob-
lems when the answer is not a number. They can handle circles with radius
5.687 but not with radius “r”. They have trouble with expressions with two or
more symbols, and generally have weak symbolic manipulation skills.

The connection between calculators and weak symbolic skills is this: frac-
tions and “numbers” like π and

√
2 are more than half-way to being symbols in

the way they are handled. People who have learned to deal with 3+
√

2 as a root
of a quadratic can routinely deal with 3 + r. People who work with 4.414 as the
root see 3+r as a completely different thing. The painful algorithms used to do
long division and multiplication are the same algorithms used in multiplication
and division of polynomials, so the step to symbols is a minor one for students
who do arithmetic by hand. It is a whole new—and complicated—world for
calculator users.

Goal selection on high-stakes K–12 tests has also contributed to the decline
in abstract thinking. Most tests are multiple choice, and answers are mostly
numerical. Numerical answers are partly a matter of convenience for test de-
velopers. Symbols in answers provide clues: πr2 is identifiable as the area of a
circle of radius r, while 8.5 is not obviously the area of a circle of radius 2.7. Nu-
merical answers are therefore an easy way to keep students from identifying the
correct answer without working the problem. However this has consequences.
It has become the primary goal of many courses to prepare students for these
tests, and they therefore emphasize numbers over symbols.

We have not argued that either calculators or high-stakes tests are inher-
ently evil, only that they are very powerful and may unintentionally have bad
consequences.

19.3.2.4 The College/K–12 divide

We have observed that goal changes may lead to short-term success and long-
term failure. If both are located in K-12, or both at the college level, then
there is an educational research community that should, in principle, notice and
correct the problem. However the examples above are of changes in K-12 that
cause problems at the college level, and there is almost no communication across
that divide. We briefly describe the situation.

The “new math” debacle of the 1960s drove a wedge between the K–12
and university communities. Since then research in K–12 has become quite



290 CHAPTER 19. EVALUATION OF EDUCATIONAL METHODS

professional (whether or not it is on target) and the leadership has been focused
and effective. College preparation is a big part of the job but they are completely
confident they can accomplish it without much input from college teachers.
Also, the input offered seems to be largely unsupported personal opinion. These
opinions (e.gċalculators are causing problems) often conflict with articles of faith
(calculators are Good) so they are seen as Wrong as well as unsupported.

Communication requires a receiver and a transmitter, and at the K-12 end
the signal sounds like noise and the receiver is turned off. The problem at the
college end is that there is no transmitter. More precisely, there is no mechanism
for collating and sharpening individual concerns to arrive at a “conclusion of
the community” let alone any good way to present such a thing to others.

The college community certainly has keen awareness of shortcomings in
school math preparation but for them the important question is how to deal
with it. There are strong opinions on “how did it get this way?” but these
opinions are rarely carefully thought out; there is no well-developed educational
research community that might extract a useful signal from the noise; and there
is no leadership that might organize some other way of getting this done. The
consequence is that “input” from the college community really is rarely more
than individual opinion. Mathematicians certainly know that mathematical
ideas must be tested with care and most will be wrong. If they approached
educational ideas the same way their individual opinions might be pretty good.
Unfortunately they seem to be wrong as often as anyone else.

The lack of communication is a serious problem. Here is an analog: many
college math courses prepare students for work in other subjects. The needs of
these subjects provide an anchor for content. Material cannot be weakened or
omitted (too much, anyway) just because it does not fit well into a new educa-
tional approach because this evokes negative feedback. In principle preparation
for college work should provide the same sort of content anchor for K–12 math
programs. In practice the lack of communication keeps this from happening.

The conclusion is that we have no collective mechanism for dealing with
problems that straddle the K-12 – college divide, and prospects for one devel-
oping any time soon are gloomy.

19.4 Teaching, learning and errors

Some problems seem to be due to, or at least hidden by, an increasing focus
on teaching rather than learning. The focus itself is understandable: growing
pressure for results puts attention on things that can be directly influenced,
mainly teaching. Most education researchers are located in teacher preparation
programs and see development of teaching techniques as their mission. The very
phrase “teacher preparation” invites a focus on teaching. However in the end
learning is the objective and teaching is only effective if it supports learning.
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19.4.1 Teacher–centered education

When teachers are considered the main actors, students tend to be regarded
as essentially all the same, if not “blank slates”. The central problem is taken
to be getting students to conform to the teacher’s direction and expectations.
This vision has difficulty accommodating a variety of learning styles (c.f. the
discussion of tactile, visual and auditory styles above) and has many other
drawbacks.

Emphasis on teaching also locates responsibility in a problematic way. Teach-
ers, as the main actors, are responsible if students don’t learn and students are
absolved of accountability. In this view the way to better performance is more
pressure on teachers. This degrades the attractiveness of the profession and
chases away teachers whether it improves student performance or not.

19.4.2 Error correction

The most serious problem in teacher-oriented education concerns the way errors
are handled. The problem was revealed by study of new educational environ-
ments in which teachers play smaller roles, or even without a teacher in the
traditional sense. Teachers are clearly not the main actors. A small amount
of human mentoring is vital, but this is not teaching and experienced teachers
often have difficulty doing it effectively. Mentoring is focused on learning, not
teaching.

We describe the role of error correction in learning, and why it causes trouble.
The context is that people look for, and find, patterns in their experiences.
The usual explanation is that this developed as a survival skill in dangerous
situations. In any case “natural learning” is a strong and largely innate part of
our intelligence.

The problem is with mistakes. Any single person’s experience will have
coincidences and bogus patterns and the natural learning drawn from these
are wrong. But critical thinking is apparently not a survival skill: our error–
correction abilities are much more primitive than the natural–learning ability.
Superstitions are born easily and are notoriously hard to root out. Effective
error–correction must be learned.

Learning divides roughly into corresponding stages: first getting information
and seeing patterns; and then error correction in the patterns seen. Teacher-
oriented education focuses on information delivery. This is the easiest part of
the task and is often mechanical enough to be done by computers. Diagnosis
and correction of errors is more subtle and for the foreseeable future will depend
on teachers or mentors.

In brief: the really essential role of teachers is not information delivery, but
diagnosis and correction of errors. This is also the hardest part of independent
learning, so the best way a teacher can help a student “learn how to learn” is
to be clear and deliberate about error correction.

We illustrate how this plays out in practice with example responses to a
student making mistakes in a math problem:
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“This is wrong. I’ll watch while you go through your work; let me know if
you spot the error and I will watch for it too.”

The student is the main actor. It is clear that a mistake has been made and
must be corrected, and that the student has significant responsibility for the
correction. The student learns to find errors as well as getting the specific error
fixed.

“This is wrong. I see your mistake and will show you how to avoid it in the
future.”

The student is more passive. However the information delivered is targeted
and the student sees the diagnosis process in action.

“This is wrong. Let me show you how to do it.”
The student is passive. The mentor sees an error was made, the student’s

work is discarded rather than diagnosed, and the response is repetition of in-
formation. Clues about the specific error are buried in the general picture and
frequently no more accessible than the first time the information was delivered.

“This isn’t quite right. I see you have the right idea but I’ll show you again.”
This phrasing is common even when they don’t have the right idea, as a

gentle and encouraging way to tell them they are wrong. However it undercuts
the learning process by suggesting there is no need to locate and correct an
erroneous “idea”. The tiresome technical error may not seem important enough
to need correction. The student is disengaged as well as passive.

These responses range from effective to unproductive, with the latter be-
ing more common today. The conclusion is that weaker critical thinking and
independent–learning skills may be due in part to teaching methods in K–12:
emphasis on presentation and information delivery; neglect of error diagnosis;
kinder, gentler ways to deal with errors; even suggesting that untestable “un-
derstanding” may be as valuable as testable skills.

An error-diagnosis approach to learning requires cooperative students. Not
only must they be willing to participate individually, but in a class setting the
rest of the class must be able to work independently while one student is getting
individual attention. The approach is vulnerable to disruption by unwilling
or disinterested students. Consequently for researchers to even consider this
approach would require them to both shift emphasis from teaching to learning
and to either exclude or account for the effects of disruptive students.

19.4.3 Repetition

International comparisons reveal that in the US material is presented in shorter
segments and there is much more repetition. Outcomes are also weaker. It
is often suggested that to improve outcomes we should lengthen segments and
reduce repetition. However short repeated segments may be a symptom rather
than the root cause, and changing this without addressing root causes may
worsen the situation.
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Short lesson segments may work better for classrooms with little error–
correction. Once a significant number of students have become disfunctional
it makes sense to take a break, give them time to forget, and try again with
a new round of information delivery. Students prone to errors may have to go
through the process several times before they stumble on the correct approach.
It is, of course, inefficient for students who got it right the first time.

Lack of error correction may itself be a symptom rather than a root cause.
Error diagnosis and correction is a one-on-one activity so in a classroom setting
it requires the cooperation of all students in the class. Focus on information
delivery may work better for classrooms with discipline problems.

This chain of connections, tracing bad outcomes back through repetition and
lack of error correction to discipline problems, is highly speculative. The point
here is not whether or not it is correct but that current mindsets and evaluation
procedures prevent the educational research community from investigating such
things.

19.5 An Obsolete Model

A deeper problem than those discussed above is that current mathematics ed-
ucation is modeled on nineteenth–century mathematics. Nineteenth–century
methodology was inadequate for modern use and was substantially revised at
the beginning of the twentieth century. It seems that commitment to an obso-
lete model not only contributes to educational problems but explains why edu-
cational researchers are unable to identify or resolve them. This is discussed in
some detail in The Nature of Contemporary Mathematics, http://www.math.vt.edu/people/quinn/education/nature0.pdf.

19.6 Summary

The 1983 “Nation at risk” report described the K–12 situation at the time in
dire terms:

If an unfriendly foreign power had attempted to impose on America
the mediocre educational performance that exists today, we might
well have viewed it as an act of war. As it stands, we have allowed
this to happen to ourselves. [. . . ] We have, in effect, been commit-
ting an act of unthinking, unilateral educational disarmament.”

This proclamation sparked enormous activity in education research and up-
heavals in curriculum design, all intended to address the problem. But in many
ways the problem has gotten worse. In the 1990s ambitious graduate programs
in mathematics were largely populated by immigrants: we were importing high-
quality K–12 and undergraduate education, critical thinking, and work ethic.
Now we can no longer meet demand through imports and the high-tech jobs
that require these skills are beginning to be exported.

Not only has the enormous activity been largely unproductive, but attitudes,
assumptions and methodologies employed seem more likely to accelerate the

http://www.math.vt.edu/people/quinn/education/nature0.pdf
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decline than arrest it. Finally the problematic attitudes and methodologies
seem to be locked in place by political pressures and incorporation into policies
of the NSF and other funding sources. It seems likely that our educational
disarmament will continue for the foreseeable future.
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